DOI QR코드

DOI QR Code

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) ;
  • Gu, Ming (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2019.04.03
  • Accepted : 2019.08.07
  • Published : 2020.01.25

Abstract

Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Andren, A., Brown, A.R., Graf, J., Mason, P.J., Moeng, C.H., Nieuwstadt, F.T.M. and Schumann, U. (1994), "Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes", Q. J. R. Meteorol. Soc., 120(520), 1457-1484. https://doi.org/10.1002/qj.49712052003.
  2. Apsley, D.D. and Castro, I.P. (1997), "A limited-length-scale k-${\epsilon}$ model for the neutral and stably-stratified atmospheric boundary layer", Bound.-Lay. Meteorol., 83(1), 75-98. https://doi.org/10.1023/A:1000252210512.
  3. Blackadar, A.K. (1962), "The vertical distribution of wind and turbulent exchange in a neutral atmosphere", J. Geophys. Res., 67(8), 3095-3102. https://doi.org/10.1029/JZ067i008p03095.
  4. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
  5. Brost, R.A., Wyngaard, J.C. and Lenschow, D.H. (1982), "Marine stratocumulus layers. Part II: Turbulence budgets", J. Atmos. Sci., 39(4), 818-836. https://doi.org/10.1175/15200469(1982)039<0818:MSLPIT>2.0.CO;2.
  6. Cai, X.H., Huo, Q., Kang, L. and Song, Y. (2014), "Equilibrium atmospheric boundary-layer flow: computational fluid dynamics simulation with balanced forces", Bound.-Lay. Meteorol., 152(3), 349-366. https://doi.org/10.1007/s10546-014-9928-0.
  7. Detering, H.W. and Etling, D. (1985), "Application of the E-${\epsilon}$ turbulence model to the atmospheric boundary layer", Bound.-Lay. Meteorol., 33(2), 113-133. https://doi.org/10.1007/BF00123386.
  8. Drew, D.R., Barlow, J.F. and Lane, S.E. (2013), "Observations of wind speed profiles over Greater London, UK, using a Doppler lidar", J. Wind Eng. Ind. Aerod., 121, 98-105. https://doi.org/10.1016/j.jweia.2013.07.019.
  9. Duynkerke, P.G. (1988), "Application of the E-${\epsilon}$ turbulence closure model to the neutral and stable atmospheric boundary layer", J. Atmos. Sci., 45(5), 865-880. https://doi.org/10.1175/15200469(1988)045<0865:AOTTCM>2.0.CO;2.
  10. Ekman, V.W. (1905), "On the influence of the earth's rotation on ocean-currents", Ark. Mat. Astr. Fys., 2, 1-52.
  11. Esau, I. (2004), "Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure", Environ. Fluid Mech., 4(3), 273-303. https://doi.org/10.1023/B:EFMC.0000024236.38450.8d.
  12. Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B. (2007), Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Office, Brussels, Belgium.
  13. Grant, A.L.M. (1986), "Observations of boundary layer structure made during the 1981 KONTUR experiment", Q. J. R. Meteorol. Soc., 112(473), 825-841. https://doi.org/10.1002/qj.49711247314.
  14. He, Y.C., Chan, P.W. and Li, Q.S. (2013), "Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer", Wind Struct., Int. J., 17(4), 419-433. https://doi.org/10.12989/was.2013.17.4.419.
  15. Koblitz, T., Bechmann, A., Sogachev, A., Sorensen, N. and Rethore, P.E. (2015), "Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow", Wind Energy, 18(1), 75-89. https://doi.org/10.1002/we.1684.
  16. Launder, B.E. and Spalding, D.B. (1974), "The numerical computation of turbulent flows", Comput. Method. Appl. M., 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
  17. Lettau, H. (1950), "A re-examination of the "Leipzig wind profile" considering some relations between wind and turbulence in the frictional layer", Tellus, 2(2), 125-129. https://doi.org/10.3402/tellusa.v2i2.8534.
  18. Li, B., Yang, Q., Solari, G. and Wu, D. (2017), "Investigation of wind load on 1,000 m high super-tall buildings based on HFFB tests", Struct. Control. Health., 25, e2068. https://doi.org/10.1002/stc.2068.
  19. Li, Q.S., Zhi, L. and Hu, F. (2010), "Boundary layer wind structure from observations on a 325 m tower", J. Wind Eng. Ind. Aerod., 98(12), 818-832. https://doi.org/10.1016/j.jweia.2010.08.001.
  20. Liu, Z., Zheng, C., Wu, Y. and Song, Y. (2018), "Investigation on characteristics of thousand-meter height wind profiles at nontropical cyclone prone areas based on field measurement", Build. Environ., 130, 62-73. https://doi.org/10.1016/j.buildenv.2017.12.001.
  21. O'Sullivan, J.P., Archer, R.A. and Flay, R.G.J. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99(1), 65-77. https://doi.org/10.1016/j.jweia.2010.10.009.
  22. Pedersen, J.G., Gryning, S.E. and Kelly, M. (2014), "On the structure and adjustment of inversion-capped neutral atmospheric boundary-layer flows: Large-eddy simulation study", Bound.-Lay. Meteorol., 153(1), 43-62. https://doi.org/10.1007/s10546-014-9937-z.
  23. Pena, A., Gryning, S.E. and Floors, R. (2014), "The turning of the wind in the atmospheric boundary layer", J. Phys.: Conf. Ser., 524(1), 012118. https://doi.org/10.1088/1742-6596/524/1/012118.
  24. Poroseva, S. and Iaccarino, G. (2001), "Simulating separated flow using k-${\epsilon}$ model", Annual Research Briefs 2001; Centre for Turbulence Research, Stanford University.
  25. Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-${\epsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46-47, 145-153. https://doi.org/10.1016/0167-6105(93)90124-7.
  26. Riopelle, G. and Stubley, G.D. (1989), "The influence of atmospheric stability on the 'Leipzig' boundary-layer structure", Bound.-Lay. Meteorol., 46(3), 207-227. https://doi.org/10.1007/BF00120840.
  27. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, John Wiley & Sons, New York, NY, USA.
  28. Sogachev, A., Kelly, M. and Leclerc, M.Y. (2012), "Consistent two-equation closure modelling for atmospheric research: buoyancy and vegetation implementations", Bound.-Lay. Meteorol., 145(2), 307-327. https://doi.org/10.1007/s10546-012-9726-5.
  29. Tamura, Y., Suda, K., Sasaki, A., Iwatani, Y., Fujii, K., Ishibashi, R. and Hibi, K. (2001), "Simultaneous measurements of wind speed profiles at two sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 89(3-4), 325-335. https://doi.org/10.1016/S0167-6105(00)00085-4.
  30. Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R. (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95(6), 411-427. https://doi.org/10.1016/j.jweia.2006.08.005.
  31. Tse, K.T., Weerasuriya, A.U. and Kwok, K.C.S. (2016), "Simulation of twisted wind flows in a boundary layer wind tunnel for pedestrian-level wind tunnel tests", J. Wind Eng. Ind. Aerod., 159, 99-109. https://doi.org/10.1016/j.jweia.2016.10.010.
  32. Weerasuriya, A.U., Hu, Z., Zhang, X., Tse, K.T., Li, S. and Chan, P.W. (2018), "New inflow boundary conditions for modeling twisted wind profiles in CFD simulation for evaluating the pedestrian-level wind field near an isolated building", Build. Environ., 132, 303-318. https://doi.org/10.1016/j.buildenv.2018.01.047.
  33. Yang, W., Quan, Y., Jin, X.Y., Tamura, Y. and Gu, M. (2008), "Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014.
  34. Yang, Y., Gu, M., Chen, S.Q. and Jin, X.Y. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001.
  35. Yang, Y., Xie, Z. and Gu, M. (2017), "Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-${\omega}$ model", Wind Struct., Int. J., 24(5), 465-480. https://doi.org/10.12989/was.2017.24.5.465.
  36. Yeo, D. (2012), "Practical estimation of veering effects on highrise structures: a database-assisted design approach", Wind Struct., Int. J., 15(5), 355-367. https://doi.org/10.12989/was.2012.15.5.355.
  37. Zhao, M. (2006), Atmospheric Boundary Layer Dynamics, Higher Education Press, Beijing, China.
  38. Zheng, D.Q., Zhang, A.S. and Gu, M. (2012), "Improvement of inflow boundary condition in large eddy simulation of flow around tall building", Eng. Appl. Comp. Fluid, 6(4), 633-647. https://doi.org/10.1080/19942060.2012.11015448.
  39. Zilitinkevich, S.S. and Esau, I.N. (2002), "On integral measures of the neutral barotropic planetary boundary layer", Bound.-Lay. Meteorol., 104(3), 371-379. https://doi.org/10.1023/A:1016540808958.
  40. Zilitinkevich, S., Esau, I. and Baklanov, A. (2007), "Further comments on the equilibrium height of neutral and stable planetary boundary layers", Q.J.R. Meteorol. Soc., 133(622), 265-271. https://doi.org/10.1002/qj.27.