DOI QR코드

DOI QR Code

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Received : 2018.12.09
  • Accepted : 2020.01.04
  • Published : 2020.01.25

Abstract

The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.

Keywords

References

  1. ACI 211.4R-08 (2008), Guide for Selecting Proportions for High-Strength Concrete using Portland Cement and other Cementitious Materials, ACI Committee Report 211.
  2. Ahmadi-Nedushan, B. (2012), "An optimized instance based learning algorithm for estimation of compressive strength of concrete", Eng. Appl. Artif. Intel., 25, 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012.
  3. Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0.
  4. Akpinar, P. and Khashman, A. (2017), "Intelligent classification system for concrete compressive strength", Procedia Comput. Sci., 120, 712-718. https://doi.org/10.1016/j.procs.2017.11.300.
  5. Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38, 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
  6. Barbuta, M., Diaconescu, R.M. and Harja, M. (2012), "Using neural networks for prediction of properties of polymer concrete with fly ash", J. Mater. Civil Eng., 24, 523-528. https://doi.org/10.1061/(ASCE)MT.1943-5533.000041 3.
  7. Baykasoglu, A., Dereli, T. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34, 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.
  8. Baykasoglu, A., Oztas, A. and Ozbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Exp. Syst. Appl., 36, 6145-6155. https://doi.org/10.1016/j.eswa. 2008.07.017.
  9. Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.
  10. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
  11. Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators", Exp. Syst. Appl., 40, 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037.
  12. Chandwani, V., Agrawal, V. and Nagar, R. (2013), "Applications of soft computing in civil engineering: a review", Int. J. Comput. Appl., 81(10), 13-20. https://doi.org/10.5120/14047-2210.
  13. Chen, L. (2003), "Study of applying macroevolutionary genetic programming to concrete strength estimation", J. Comput. Civil Eng., 17(4), 290-294. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290).
  14. Chen, L. and Wang, T.S. (2010), "Modeling strength of high-performance concrete using an improved grammatical evolution combined with macrogenetic algorithm", J. Comput. Civil Eng., 24(3), 281-288. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000031.
  15. Cheng, M.Y, Chou, J.S., Roy, A.V.F. and Wu, Y.W. (2012), "High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Auto. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004.
  16. Cheng, M.Y., Firdausi, P.M. and Prayogo, D. (2014a), "High-performance concrete compressive strength prediction using genetic weighted pyramid operation tree (GWPOT)", Eng. Appl. Artif. Intel., 29, 104-113. https://doi.org/10.1016/j.engappai.2013.11.014.
  17. Cheng, M.Y., Prayogo, D. and Wu, Y.W. (2014b), "Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture", J. Comput. Civil Eng., 28(4), 1-7. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000347.
  18. Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
  19. Chou, J.S. and Tsai, C.F. (2012), "Concrete compressive strength analysis using a combined classification and regression technique", Auto. Constr., 24, 52-60. https://doi.org/10.1016/j.autcon.2012.02.001.
  20. Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088.
  21. Chou, J.S., Chong, W.K. and Bui, D.K. (2016), "Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications", J. Comput. Civil Eng., 30(5), 1-17. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000561.
  22. Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
  23. DeRousseau, M.A., Kasprzyk, J.R. and Srubar, W.V. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007.
  24. Douma, O.B., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2016), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(S1), 707-718. http://doi.org/10.1007/s00521-016-2368-7.
  25. Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intel., 26, 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014.
  26. Hossain, K.M.A., Anwar, M.S. and Samani, S.G. (2018), "Regression and artificial neural network models for strength properties of engineered cementitious composites", Neur. Comput. Appl., 29(9), 631-645. http://doi.org/10.1007/s00521-016-2602-3.
  27. Jayaram, M.A., Nataraja, M.C. and Ravikumar, C.N. (2010), "Design of high performance concrete mixes through particle swarm optimization", J. Intel. Syst., 19(3), 249-264. http://doi.org/10.1515/JISYS.2010.19.3.249.
  28. Jin-Li, W. and Hai-qing, L. (2010), "Application of neural network in prediction for self-compaction concrete", Fuzz. Inform. Eng., AISC, 78, 733-738. https://doi.org/10.1007/978-3-642-14880-4_81.
  29. Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Auto. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011.
  30. Khashman, A. and Akpinar, P. (2017), "Non-destructive prediction of concrete compressive strength using neural networks", Procedia Comput. Sci., 108C, 2358-2362. https://doi.org/10.1016/j.procs.2017.05.039.
  31. Ko, M., Tiwari, A. and Mehnen, J. (2010), "A review of soft computing applications in supply chain management", Appl. Soft Comput., 10, 661-674. https://doi.org/10.1016/j.asoc.2009.09.004.
  32. Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of FA and SF on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
  33. Lee, J.H. and Yoon, Y.S. (2009), "Modified harmony search algorithm and neural networks for concrete mix proportion design", J. Comput. Civil Eng., 23(1), 57-61. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:1(57).
  34. Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
  35. Lim, C.H., Yoon, Y.S. and Kim, J.H. (2004), "Genetic algorithm in mix proportioning of high-performance concrete", Cement Concrete Res., 34, 409-420. https://doi.org/10.1016/j.cemconres.2003.08.018.
  36. Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 581-592. https://doi.org/10.12989/cac.2014.13.5.621.
  37. Lokuge, W., Wilson, A., Gunasekara, C., Law, D.W. and Setunge, S. (2018), "Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model", Constr. Build. Mater., 166, 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175.
  38. Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45, 105-112. https://doi.org/10.1016/j.advengsoft.2011.09.014.
  39. Nazari, A. and Khalaj, G. (2012), "Prediction compressive strength of lightweight geopolymers by ANFIS", Ceram. Int., 38, 4501-4510. https://doi.org/10.1016/j.ceramint.2012.02.026.
  40. Nazari, A. and Sanjayan, J.G. (2015), "Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine", Ceram. Int., 41(9), 12164-12177. https://doi.org/10.1016/j.ceramint.2015.06.037.
  41. Nehdi, M., Chabib, H.E. and Naggar, M.H.E. (2001), "Predicting performance of self-compacting mixtures using neural networks", ACI Mater. J., 394-401.
  42. Nehdi, M.L. and Bassuoni, M.T. (2009), "Fuzzy logic approach for estimating durability of concrete", Proceedings of the Institution of Civil Engineers, Construction Materials (CM2), 162, 81-92. https://doi.org/10.1680/coma.2009.162.2.81.
  43. Omran, B.A., Chen, Q. and Jin, R. (2014), "Prediction of compressive strength of green concrete using artificial neural networks", Proc. 50th Annual International Conference of the Associated Schools of Construction, Washington, D.C., USA, March.
  44. Omran, B.A., Chen, Q. and Jin, R. (2016), "Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete", J. Comput. Civil Eng., 30(6), 1-12. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596.
  45. Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22, 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
  46. Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Asghar Bhatti, M. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20, 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054.
  47. Pal, S. and Ghosh, A. (2004), "Soft computing data mining", Inform. Sci., 163, 1-3. https://doi.org/10.1016/j.ins. 2003.03.012.
  48. Pala, M., Ozbay, E., Aztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21, 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
  49. Peng, C.H., Yeh, I.C. and Lien, L.C. (2010), "Building strength models for high-performance concrete at different ages using genetic operation trees, nonlinear regression, and neural networks", Eng. Comput., 26, 61-73. https://doi.org/10.1007/s00366-009-0142-5.
  50. Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2016), "Neural network, machine learning, and evolutionary approaches for concrete material characterization", ACI Mater. J., 113(6), 781-789. https://doi.org/10.14359/51689360.
  51. Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2017), "Supervised deep restricted boltzmann machine for estimation of concrete", ACI Mater. J., 114(2), 237-244. https://doi.org/10.14359/51689560.
  52. Raghu Prasad, B.K., Eskandari, H. and Reddy, B.V.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23, 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
  53. Rajeshwari, R. and Sukomal, M. (2019), "Prediction of compressive strength of high volume fly ash concrete using artificial neural network", Select Proceedings of ICSCBM 2018, Surathkal, June. https://doi.org/10.1007/978-981-13-3317-0_42.
  54. Rao, S.S. (2009), Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
  55. Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolana using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165.
  56. Sebastia, M., Olma, I.F. and Irabien, A. (2003), "Neural network prediction of unconfined compressive strength of coal fly ash - cement admixtures", Cement Concrete Res., 33, 1137-1146. https://doi.org/10.1016/S0008-8846(03)00019-X.
  57. Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks", Comput. Struct., 88, 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003.
  58. Sonebi, M. and Cevik, A. (2009a), "Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverized fuel ash", Constr. Build. Mater., 23, 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012.
  59. Sonebi, M. and Cevik, A. (2009b), "Prediction of fresh and hardened properties of self-consolidating concrete using neurofuzzy approach", J. Comput. Civil Eng., 21(11), 672-679. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(672).
  60. Tanyildizi, H. and Coskun, A. (2007), "Fuzzy logic model for prediction of compressive strength of lightweight concrete made with scoria aggregate and fly ash", International Earthquake Symposium, Kocaeli, October.
  61. Tayfur, G. (2013), "Review of soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms", J. Hydrolog. Eng., 18(12), 1796. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000772.
  62. Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
  63. Tsai, H.C. (2010), "Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization", Exp. Syst. Appl., 37(2), 1104-1112. https://doi.org/10.1016/j.eswa.2009.06.093.
  64. Tsai, H.C. (2011), "Weighted operation structures to program strengths of concrete-typed specimens using genetic algorithm", Exp. Syst. Appl., 38(1), 161-168. https://doi.org/10.1016/j.eswa.2010.06.034.
  65. Tsai, H.C. (2016), "Modeling concrete strength with high-order neural-networks", Neur. Comput. Appl., 27(8), 2465-2473. http://doi.org/10.1007/s00521-015-2017-6.
  66. Tsai, H.C. and Lin, Y.H. (2011), "Predicting high-strength concrete parameters using weighted genetic programming", Eng. Comput., 27, 347-355. https://doi.org/10.1007/s00366-011-0208-z.
  67. Uygunoglu, T. and Unal, O. (2006), "A new approach to determination of compressive strength of fly ash concrete using fuzzy logic", J. Scientif. Indus. Res., 65, 894-899. http://hdl.handle.net/123456789/4954.
  68. Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25, 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108.
  69. Vakhshouri, B. and Nejadi, S. (2014), "Application of adaptive neuro-fuzzy inference system in high strength concrete", Int. J. Comput. Appl., 101(5), 39-48. https://doi.org/10.5120/17687-8548.
  70. Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomput., 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099.
  71. Yaman, M.A., Elaty, M.A. and Taman, M. (2017), "Predicting the ingredients of self-compacting concrete using artificial neural network", Alex. Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007.
  72. Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
  73. Yeh, I.C. (1999), "Design of high performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13, 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36).
  74. Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597).
  75. Yeh, I.C. and Lien, L.C. (2009), "Knowledge discovery of concrete material using genetic operation Trees", Exp. Syst. Appl., 36, 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004.
  76. Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS", Adv. Eng. Softw., 67, 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004.

Cited by

  1. Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete vol.28, pp.2, 2020, https://doi.org/10.12989/cac.2021.28.2.221