References
- ACI 211.4R-08 (2008), Guide for Selecting Proportions for High-Strength Concrete using Portland Cement and other Cementitious Materials, ACI Committee Report 211.
- Ahmadi-Nedushan, B. (2012), "An optimized instance based learning algorithm for estimation of compressive strength of concrete", Eng. Appl. Artif. Intel., 25, 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012.
- Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0.
- Akpinar, P. and Khashman, A. (2017), "Intelligent classification system for concrete compressive strength", Procedia Comput. Sci., 120, 712-718. https://doi.org/10.1016/j.procs.2017.11.300.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38, 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
- Barbuta, M., Diaconescu, R.M. and Harja, M. (2012), "Using neural networks for prediction of properties of polymer concrete with fly ash", J. Mater. Civil Eng., 24, 523-528. https://doi.org/10.1061/(ASCE)MT.1943-5533.000041 3.
- Baykasoglu, A., Dereli, T. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34, 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.
- Baykasoglu, A., Oztas, A. and Ozbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Exp. Syst. Appl., 36, 6145-6155. https://doi.org/10.1016/j.eswa. 2008.07.017.
- Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators", Exp. Syst. Appl., 40, 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037.
- Chandwani, V., Agrawal, V. and Nagar, R. (2013), "Applications of soft computing in civil engineering: a review", Int. J. Comput. Appl., 81(10), 13-20. https://doi.org/10.5120/14047-2210.
- Chen, L. (2003), "Study of applying macroevolutionary genetic programming to concrete strength estimation", J. Comput. Civil Eng., 17(4), 290-294. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290).
- Chen, L. and Wang, T.S. (2010), "Modeling strength of high-performance concrete using an improved grammatical evolution combined with macrogenetic algorithm", J. Comput. Civil Eng., 24(3), 281-288. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000031.
- Cheng, M.Y, Chou, J.S., Roy, A.V.F. and Wu, Y.W. (2012), "High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Auto. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004.
- Cheng, M.Y., Firdausi, P.M. and Prayogo, D. (2014a), "High-performance concrete compressive strength prediction using genetic weighted pyramid operation tree (GWPOT)", Eng. Appl. Artif. Intel., 29, 104-113. https://doi.org/10.1016/j.engappai.2013.11.014.
- Cheng, M.Y., Prayogo, D. and Wu, Y.W. (2014b), "Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture", J. Comput. Civil Eng., 28(4), 1-7. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000347.
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
- Chou, J.S. and Tsai, C.F. (2012), "Concrete compressive strength analysis using a combined classification and regression technique", Auto. Constr., 24, 52-60. https://doi.org/10.1016/j.autcon.2012.02.001.
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088.
- Chou, J.S., Chong, W.K. and Bui, D.K. (2016), "Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications", J. Comput. Civil Eng., 30(5), 1-17. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000561.
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
- DeRousseau, M.A., Kasprzyk, J.R. and Srubar, W.V. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007.
- Douma, O.B., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2016), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(S1), 707-718. http://doi.org/10.1007/s00521-016-2368-7.
- Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intel., 26, 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014.
- Hossain, K.M.A., Anwar, M.S. and Samani, S.G. (2018), "Regression and artificial neural network models for strength properties of engineered cementitious composites", Neur. Comput. Appl., 29(9), 631-645. http://doi.org/10.1007/s00521-016-2602-3.
- Jayaram, M.A., Nataraja, M.C. and Ravikumar, C.N. (2010), "Design of high performance concrete mixes through particle swarm optimization", J. Intel. Syst., 19(3), 249-264. http://doi.org/10.1515/JISYS.2010.19.3.249.
- Jin-Li, W. and Hai-qing, L. (2010), "Application of neural network in prediction for self-compaction concrete", Fuzz. Inform. Eng., AISC, 78, 733-738. https://doi.org/10.1007/978-3-642-14880-4_81.
- Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Auto. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011.
- Khashman, A. and Akpinar, P. (2017), "Non-destructive prediction of concrete compressive strength using neural networks", Procedia Comput. Sci., 108C, 2358-2362. https://doi.org/10.1016/j.procs.2017.05.039.
- Ko, M., Tiwari, A. and Mehnen, J. (2010), "A review of soft computing applications in supply chain management", Appl. Soft Comput., 10, 661-674. https://doi.org/10.1016/j.asoc.2009.09.004.
- Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of FA and SF on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
- Lee, J.H. and Yoon, Y.S. (2009), "Modified harmony search algorithm and neural networks for concrete mix proportion design", J. Comput. Civil Eng., 23(1), 57-61. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:1(57).
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
- Lim, C.H., Yoon, Y.S. and Kim, J.H. (2004), "Genetic algorithm in mix proportioning of high-performance concrete", Cement Concrete Res., 34, 409-420. https://doi.org/10.1016/j.cemconres.2003.08.018.
- Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 581-592. https://doi.org/10.12989/cac.2014.13.5.621.
- Lokuge, W., Wilson, A., Gunasekara, C., Law, D.W. and Setunge, S. (2018), "Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model", Constr. Build. Mater., 166, 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45, 105-112. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Nazari, A. and Khalaj, G. (2012), "Prediction compressive strength of lightweight geopolymers by ANFIS", Ceram. Int., 38, 4501-4510. https://doi.org/10.1016/j.ceramint.2012.02.026.
- Nazari, A. and Sanjayan, J.G. (2015), "Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine", Ceram. Int., 41(9), 12164-12177. https://doi.org/10.1016/j.ceramint.2015.06.037.
- Nehdi, M., Chabib, H.E. and Naggar, M.H.E. (2001), "Predicting performance of self-compacting mixtures using neural networks", ACI Mater. J., 394-401.
- Nehdi, M.L. and Bassuoni, M.T. (2009), "Fuzzy logic approach for estimating durability of concrete", Proceedings of the Institution of Civil Engineers, Construction Materials (CM2), 162, 81-92. https://doi.org/10.1680/coma.2009.162.2.81.
- Omran, B.A., Chen, Q. and Jin, R. (2014), "Prediction of compressive strength of green concrete using artificial neural networks", Proc. 50th Annual International Conference of the Associated Schools of Construction, Washington, D.C., USA, March.
- Omran, B.A., Chen, Q. and Jin, R. (2016), "Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete", J. Comput. Civil Eng., 30(6), 1-12. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596.
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22, 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Asghar Bhatti, M. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20, 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054.
- Pal, S. and Ghosh, A. (2004), "Soft computing data mining", Inform. Sci., 163, 1-3. https://doi.org/10.1016/j.ins. 2003.03.012.
- Pala, M., Ozbay, E., Aztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21, 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
- Peng, C.H., Yeh, I.C. and Lien, L.C. (2010), "Building strength models for high-performance concrete at different ages using genetic operation trees, nonlinear regression, and neural networks", Eng. Comput., 26, 61-73. https://doi.org/10.1007/s00366-009-0142-5.
- Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2016), "Neural network, machine learning, and evolutionary approaches for concrete material characterization", ACI Mater. J., 113(6), 781-789. https://doi.org/10.14359/51689360.
- Rafiei, M.H., Khushefati, W.H., Demirboga, R. and Adeli, H. (2017), "Supervised deep restricted boltzmann machine for estimation of concrete", ACI Mater. J., 114(2), 237-244. https://doi.org/10.14359/51689560.
- Raghu Prasad, B.K., Eskandari, H. and Reddy, B.V.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23, 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
- Rajeshwari, R. and Sukomal, M. (2019), "Prediction of compressive strength of high volume fly ash concrete using artificial neural network", Select Proceedings of ICSCBM 2018, Surathkal, June. https://doi.org/10.1007/978-981-13-3317-0_42.
- Rao, S.S. (2009), Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolana using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165.
- Sebastia, M., Olma, I.F. and Irabien, A. (2003), "Neural network prediction of unconfined compressive strength of coal fly ash - cement admixtures", Cement Concrete Res., 33, 1137-1146. https://doi.org/10.1016/S0008-8846(03)00019-X.
- Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks", Comput. Struct., 88, 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003.
- Sonebi, M. and Cevik, A. (2009a), "Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverized fuel ash", Constr. Build. Mater., 23, 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012.
- Sonebi, M. and Cevik, A. (2009b), "Prediction of fresh and hardened properties of self-consolidating concrete using neurofuzzy approach", J. Comput. Civil Eng., 21(11), 672-679. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(672).
- Tanyildizi, H. and Coskun, A. (2007), "Fuzzy logic model for prediction of compressive strength of lightweight concrete made with scoria aggregate and fly ash", International Earthquake Symposium, Kocaeli, October.
- Tayfur, G. (2013), "Review of soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms", J. Hydrolog. Eng., 18(12), 1796. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000772.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Tsai, H.C. (2010), "Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization", Exp. Syst. Appl., 37(2), 1104-1112. https://doi.org/10.1016/j.eswa.2009.06.093.
- Tsai, H.C. (2011), "Weighted operation structures to program strengths of concrete-typed specimens using genetic algorithm", Exp. Syst. Appl., 38(1), 161-168. https://doi.org/10.1016/j.eswa.2010.06.034.
- Tsai, H.C. (2016), "Modeling concrete strength with high-order neural-networks", Neur. Comput. Appl., 27(8), 2465-2473. http://doi.org/10.1007/s00521-015-2017-6.
- Tsai, H.C. and Lin, Y.H. (2011), "Predicting high-strength concrete parameters using weighted genetic programming", Eng. Comput., 27, 347-355. https://doi.org/10.1007/s00366-011-0208-z.
- Uygunoglu, T. and Unal, O. (2006), "A new approach to determination of compressive strength of fly ash concrete using fuzzy logic", J. Scientif. Indus. Res., 65, 894-899. http://hdl.handle.net/123456789/4954.
- Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25, 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108.
- Vakhshouri, B. and Nejadi, S. (2014), "Application of adaptive neuro-fuzzy inference system in high strength concrete", Int. J. Comput. Appl., 101(5), 39-48. https://doi.org/10.5120/17687-8548.
- Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomput., 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099.
- Yaman, M.A., Elaty, M.A. and Taman, M. (2017), "Predicting the ingredients of self-compacting concrete using artificial neural network", Alex. Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Yeh, I.C. (1999), "Design of high performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13, 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36).
- Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597).
- Yeh, I.C. and Lien, L.C. (2009), "Knowledge discovery of concrete material using genetic operation Trees", Exp. Syst. Appl., 36, 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004.
- Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS", Adv. Eng. Softw., 67, 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004.
Cited by
- Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete vol.28, pp.2, 2020, https://doi.org/10.12989/cac.2021.28.2.221