References
- Althobiani, F. and Ball, A. (2014), "An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks", Expert Syst. Applica., 41(9), 4113-4122. https://doi.org/10.1016/j.eswa.2013.12.026
- Aretakis, N. and Mathioudakis, K. (1998), "Classification of radial compressor faults using pattern-recognition techniques", Control Eng. Practice, 6(10), 1217-1223. https://doi.org/10.1016/S0967-0661(98)00085-9
- Attoui, I., Fergani, N., Boutasseta, N., Oudjani, B. and Deliou, A. (2017), "A new time-frequency method for identification and classification of ball bearing faults", J. Sound Vib., 397, 241-265. https://doi.org/10.1016/j.jsv.2017.02.041
- Bendat, J.S. and Piersol, A.G. (1980), Engineering Applications of Correlation and Spectral Analysis, Wiley-Interscience.
- Cui, H., Zhang, L., Kang, R. and Lan, X. (2009), "Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method", J. Loss Prevent. Process Indust., 22(6), 864-867. https://doi.org/10.1016/j.jlp.2009.08.012
- Elhaj, M., Gu, F., Ball, A.D., Albarbar, A., Al-Qattan, M. and Naid, A. (2008), "Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring", Mech. Syst. Signal Process., 22(2), 374-389. https://doi.org/10.1016/j.ymssp.2007.08.003
- Fan, Y., Nowaczyk, S. and Rognvaldsson, T. (2015), "Evaluation of self-organized approach for predicting compressor faults in a city bus fleet", Procedia Comput. Sci., 53, 447-456. https://doi.org/10.1016/j.procs.2015.07.322
- Jung, U. and Koh, B.H. (2014), "Bearing fault detection through multiscale wavelet scalogram-based SPC", Smart Struct. Syst., Int. J., 14(3), 377-395. https://doi.org/10.12989/sss.2014.14.3.377
- Kim, Y.W. and Jeong, W.B. (2019), "Modification of acceleration signal to improve classification performance of valve defects in a linear compressor", Smart Struct. Syst., Int. J., 23(1), 71-79. https://doi.org/10.12989/sss.2019.23.1.071
- Kim, M. and Kim, M.S. (2005), "Performance investigation of a variable speed vapor compression system for fault detection and diagnosis", Int. J. Refrigeration, 28(4), 481-488. https://doi.org/10.1016/j.ijrefrig.2004.11.008
- Lei, Y., He, Z. and Zi, Y. (2008), "A new approach to intelligent fault diagnosis of rotating machinery", Expert Syst. Applicat., 35(4), 1593-1600. https://doi.org/10.1016/j.eswa.2007.08.072
- Loukopoulos, P., Zolkiewski, G., Bennett, I., Sampath, S., Pilidis, P., Li, X. and Mba, D. (2019), "Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure", Mech. Syst. Signal Process., 121, 359-372. https://doi.org/10.1016/j.ymssp.2018.09.033
- Mathioudakis, K. and Stamatis, A. (1994), "Compressor fault identification from overall performance data based on adaptive stage stacking", J. Eng. Gas Turbines Power, 116(1), 156-164. https://doi.org/10.1115/1.2906785
- Ouadine, A., Mjahed, M., Ayad, H. and El Kari, A. (2018), "Aircraft Air Compressor Bearing Diagnosis Using Discriminant Analysis and Cooperative Genetic Algorithm and Neural Network Approaches", Appl. Sci., 8(11), 2243. https://doi.org/10.3390/app8112243
- Pichler, K., Lughofer, E., Pichler, M., Buchegger, T., Klement, E. P. and Huschenbett, M. (2016), "Fault detection in reciprocating compressor valves under varying load conditions", Mech. Syst. Signal Process., 70, 104-119. https://doi.org/10.1016/j.ymssp.2015.09.005
- Qi, G., Tsai, W.T., Hong, Y., Wang, W., Hou, G. and Zhu, Z. (2016), "Fault-diagnosis for reciprocating compressors using big data", Proceedings of 2016 IEEE Second International Conference on Big Data Computing Service and Applications, pp. 72-81.
- Qi, G., Zhu, Z., Erqinhu, K., Chen, Y., Chai, Y. and Sun, J. (2018), "Fault-diagnosis for reciprocating compressors using big data and machine learning", Simul. Model. Pract. Theory, 80, 104-127. https://doi.org/10.1016/j.simpat.2017.10.005
- Shen, C., Wang, D., Liu, Y., Kong, F. and Tse, P.W. (2014), "Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines", Smart Struct. Syst., Int. J., 13(3), 453-471. https://doi.org/10.12989/sss.2014.13.3.453
- Shin, K. and Hammond, J. (2008), Fundamentals of Signal Processing for Sound and Vibration Engineers, John Wiley & Sons.
- Tran, V.T., AlThobiani, F., Tinga, T., Ball, A. and Niu, G. (2017), "Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network", Proceedings of the Institution of Mechanical Engineers., Part C: J. Mech. Eng. Sci., 232(20), 3767-3780. https://doi.org/10.1177/0954406217740929
- Wang, Y., Xue, C., Jia, X. and Peng, X. (2015), "Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion", Mech. Syst. Signal Process., 56, 197-212. https://doi.org/10.1016/j.ymssp.2014.11.002
- Yang, B.S., Hwang, W.W., Kim, D.J. and Tan, A.C. (2005), "Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines", Mech. Syst. Signal Process., 19(2), 371-390. https://doi.org/10.1016/j.ymssp.2004.06.002
- Zhou, Y., Ma, X. and Yuan, Y. (2006), "Reciprocating compressor fault diagnosis based on vibration signal information entropy", Mach. Tool Hydraul., 10, 69.
- Zhu, D., Feng, Y., Chen, Q. and Cai, J. (2010), "Image recognition technology in rotating machinery fault diagnosis based on artificial immune", Smart Struct. Syst., Int. J., 6(4), 389-403. https://doi.org/10.12989/sss.2010.6.4.389