References
- ACI (2002), Report on High-Strength Concrete-ACI Committee 363, In American Concrete Institute.
- Alipour, P., Behforouz, B., Mohseni, E. and Zehtab, B. (2019), "Investigation of SCC characterizations incorporating supplementary cementitious materials", Emerg. Mater. Res., 8(3), 492-507. https://doi.org/10.1680/jemmr.18.00024.
- Ameri, F., Shoaei, P., Zareei, S.A. and Behforouz, B. (2019), "Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars", Constr. Build. Mater., 222, 49-63. https://doi.org/10.1016/j.conbuildmat.2019.06.079.
- Aslani, F. and Nejadi, S. (2012), "Mechanical properties of conventional and self-compacting concrete: An analytical study", Constr. Build. Mater., 36, 330-347. https://doi.org/10.1016/j.conbuildmat.2012.04.034.
- ASTM C1202 (2012), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials. https://doi.org/10.1520/C1202-12.2.
- ASTM C192/C192M (2016), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, American Society for Testing and Materials. https://doi.org/10.1520/C0192.
- ASTM C496/C496M-11 (2011), ASTM C496-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards Volume 04.02. https://doi.org/10.1520/C0496
- BS 1881-122 (2011), Testing Concrete - Part 122 : Method for Determination of Water Absorption, BSI-British Standards Institution.
- Eskandari-Naddaf, H. and Kazemi, R. (2017), "ANN prediction of cement mortar compressive strength, influence of cement strength class", Constr. Build. Mater., 138, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.01.132.
- Gholampour, A., Mansouri, I., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models", Neur. Comput. Appl.. 1-14. https://doi.org/10.1007/s00521-018-3630-y.
- Goriparthi, M.R. and Gunneswara Rao, T.D. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/acc.2017.5.4.313.
- Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Sipos, T.K. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Mater., 12(4), 561. https://doi.org/10.3390/ma12040561.
-
Heidari, A. and Tavakoli, D. (2013), "A study of the mechanical properties of ground ceramic powder concrete incorporating nano-
$SiO_2$ particles", Constr. Build. Mater., 35, 228-264. https://doi.org/10.1016/j.conbuildmat.2012.07.110. - Hendriks, C.A., Worrell, E., de Jager, D., Blok, K. and Riemer, P. (1998), "Emission reduction of greenhouse gases from the cement industry", Fourth International Conference on Greenhouse Gas Control Technologies. https://doi.org/10.1016/B978-008043018-8/50150-8.
- Higashiyama, H., Yagishita, F., Sano, M. and Takahashi, O. (2012), "Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate", Constr. Build. Mater., 26(1), 96-101. https://doi.org/10.1016/j.conbuildmat.2011.05.008.
- Jalal, M., Nassir, N., Jalal, H. and Arabali, P. (2019), "On the strength and pulse velocity of rubberized concrete containing silica fume and zeolite: Prediction using multivariable regression models", Constr. Build. Mater., 223, 530-543. https://doi.org/10.1016/j.conbuildmat.2019.06.233.
- Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78(Part A), 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018.
- Kakali, G., Perraki, T., Tsivilis, S. and Badogiannis, E. (2001), "Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity", Appl. Clay Sci., 20(1-2), 73-80. https://doi.org/10.1016/S0169-1317(01)00040-0.
- Kannan, D.M., Aboubakr, S.H., EL-Dieb, A.S. and Reda Taha, M.M. (2017), "High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement", Constr. Build. Mater., 144, 35-41. https://doi.org/10.1016/j.conbuildmat.2017.03.115.
- Khademi, F., Jamal, S.M., Deshpande, N. and Londhe, S. (2016), "Predicting strength of recycled aggregate concrete using Artificial Neural Network, adaptive neuro-fuzzy inference system and multiple linear regression", Int. J. Sustain. Built Envir., 5, 355-369. https://doi.org/10.1016/j.ijsbe.2016.09.003.
- Khatibinia, M., Feizbakhsh, A., Mohseni, E. and Ranjbar, M.M. (2016), "Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine", Comput. Concrete, 12(6), 1065-1082. https://doi.org/10.12989/cac.2016.18.6.1065.
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.
-
Miyandehi, B.M., Behforouz, B., Khotbehsara, E.M., Balgouri, H.A., Fathi, S. and Khotbehsara, M.M. (2014), "An experimental investigation on nano-
$Al_2O_3$ based self-compacting mortar", J. Am. Sci., 10(11), 229-233. https://doi.org/10.1192/bjp.205.1.76a. - Mohseni, E., Kazemi, M.J., Koushkbaghi, M., Zehtab, B. and Behforouz, B. (2019), "Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina", Constr. Build. Mater., 209, 532-540. https://doi.org/10.1016/j.conbuildmat.2019.03.067.
- Naderpour, H., Rafiean, A.H. and Fakharian, P. (2018), "Compressive strength prediction of environmentally friendly concrete using artificial neural networks", J. Build. Eng., 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007.
- Nasr, D., Behforouz, B., Borujeni, P.R., Borujeni, S.A. and Zehtab, B. (2019), "Effect of nano-silica on mechanical properties and durability of self-compacting mortar containing natural zeolite: Experimental investigations and artificial neural network modeling", Constr. Build. Mater., 229, 116888. https://doi.org/10.1016/j.conbuildmat.2019.116888.
- Pacheco-Torgal, F. and Jalali, S. (2010), "Reusing ceramic wastes in concrete", Constr. Build. Mater., 24(5), 832-838. https://doi.org/10.1016/j.conbuildmat.2009.10.023.
- Pavlik, Z., Trnik, A., Kulovana, T., Scheinherrova, L., Rahhal, V., Irassar, E. and Cerny, R. (2016), "DSC and TG analysis of a blended binder based on waste ceramic powder and portland cement", Int. J. Thermophys., 37-32. https://doi.org/10.1007/s10765-016-2043-3.
- Reda, M.M., Shrive, N.G. and Gillott, J.E. (1999), "Microstructural investigation of innovative UHPC", Cement Concrete Res., 29(3), 323-329. https://doi.org/10.1016/S0008-8846(98)00225-7.
- Riahi, S. and Nazari, A. (2019), "Predicting the effects of nanoparticles on early age compressive strength of ash-based geopolymers by artificial neural networks", Neur. Comput. Appl., 31, 743-750. https://doi.org/10.1007/s00521-012-1085-0.
- Rodriguez-Camacho, R.E. and Uribe-Afif, R. (2002), "Importance of using the natural pozzolans on concrete durability", Cement Concrete Res., 32(12), 1851-1858. https://doi.org/10.1016/S0008-8846(01)00714-1.
- Saha, S. and Rajasekaran, C. (2016), "Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement", Adv. Concrete Constr., 4(1), 27035. https://doi.org/10.12989/acc.2016.4.1.027.
- Senthamarai, R.M. and Devadas Manoharan, P. (2005), "Concrete with ceramic waste aggregate", Cement Concrete Compos., 27(9-10), 910-913. https://doi.org/10.1016/j.cemconcomp.2005.04.003.
- Sobhani, J., Khanzadi, M. and Movahedian, A.H. (2013), "Support vector machine for prediction of the compressive strength of no-slump concrete", Comput. Concrete, 11(4), 337-350. https://doi.org/10.12989/cac.2013.11.4.337.
- Statements, B. and Size, T. (2010), "Standard test method for sieve analysis of fine and coarse aggregates 1", Annual Book of ASTM Standards. https://doi.org/10.1520/C0136-06.2.
- Subasi, S., Ozturk, H. and Emiroglu, M. (2017), "Utilizing of waste ceramic powders as filler material in self-consolidating concrete", Constr. Build. Mater., 149, 567-574. https://doi.org/10.1016/j.conbuildmat.2017.05.180.
- Tarighat, A. and Zehtab, B. (2016), "Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion", Arab. J. Sci. Eng., 14(10), 3945-3958. https://doi.org/10.1007/s13369-016-2033-6.
- Tavakoli, D., Heidari, A. and Karimian, M. (2013), "Properties of concretes produced with waste ceramic tile aggregate", Asian J. Civil Eng., 14(3), 369-382.
- Test, C.C., Cabinets, M., Rooms, M., Test, C.C., Drilled, T. and Ag, C. (2012), ASTM Standard C1760-Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete, ASTM International. https://doi.org/10.1520/C1760-12.2.
-
Yang, J., Mohseni, E., Behforouz, B. and Khotbehsara, M. M. (2015), "An experimental investigation into the effects of
$Cr_2O_3$ and$ZnO_2$ nanoparticles on the mechanical properties and durability of self-compacting mortar", Int. J. Mater. Res., 106(8), 886-892. https://doi.org/10.3139/146.111245.
Cited by
- Strength and strain modeling of CFRP -confined concrete cylinders using ANNs vol.27, pp.3, 2020, https://doi.org/10.12989/cac.2021.27.3.225
- Effect of basalt fiber on the freeze-thaw resistance of recycled aggregate concrete vol.28, pp.2, 2020, https://doi.org/10.12989/cac.2021.28.2.115