DOI QR코드

DOI QR Code

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi (Department of Civil Engineering, University of Mazandaran) ;
  • Fazli, Saeed (Department of Civil Engineering, University of Mazandaran)
  • Received : 2019.04.05
  • Accepted : 2020.01.21
  • Published : 2020.02.25

Abstract

This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

Keywords

References

  1. ACI Committee, and International Organization for Standardization, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
  2. AISC, Specification for structural steel building, (2005), Eng. J. AISC, ANSI/AISC360-05, Reston, Chicago, Illinois, USA.
  3. Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2012), "Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading", Comput. Concrete, 9(6), 403-426. https://doi.org/10.12989/cac.2012.9.6.403.
  4. Canadian Standards Association (2004), Design of Concrete Structures, Canadian Standards Association (CSA), Mississauga, ON.
  5. CEN (European Committee for Standardization), (2004), Design of Composite Steel and Concrete Structures, Eurocode 4 (EC4).
  6. Chen, Q., Shin, M. and Andrawes, B. (2014), "Experimental study of non-circular concrete elements actively confined with shape memory alloy wires", Constr. Build. Mater., 61, 303-311. https://doi.org/10.1016/j.conbuildmat.2014.02.076.
  7. Desayi, P. and Krishnan, S. (1964), "Equation for the stress-strain curve of concrete", J. Proc., 61(3), 345-350.
  8. Ding, F.X., Fang, C., Bai, Y. and Gong, Y.Z. (2014), "Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading", J. Constr. Steel Res., 98, 146-157. https://doi.org/10.1016/j.jcsr.2014.03.005.
  9. Ding, F.X., Liu, J., Liu, X.M., Yu, Z.W. and Li, D.W. (2015), "Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression", Thin Wall. Struct., 94, 155-166. https://doi.org/10.1016/j.tws.2015.04.020.
  10. Ellobody, E. and Ghazy, M.F. (2012), "Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 76, 167-176. https://doi.org/10.1016/j.jcsr.2012.04.001.
  11. Ellobody, E. and Young, B. (2006), "Nonlinear analysis of concrete-filled steel SHS and RHS columns", Thin Wall. Struct., 44(8), 919-930. https://doi.org/10.1016/j.tws.2006.07.005.
  12. Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin Wall. Struct., 80, 46-56. https://doi.org/10.1016/j.tws.2014.02.022.
  13. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  14. Haghinejada, A. and Nematzadeh, M. (2016), "Three-dimensional finite element analysis of compressive behavior of circular steel tube-confined concrete stub columns by new confinement relationships", Lat. AM. J. Solid. Struct., 13(5), 916-944. http://dx.doi.org/10.1590/1679-78252631.
  15. Han, L.H., Wang, W.D. and Zhao, X.L. (2008), "Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications", Eng. Struct., 30(6), 1647-1658. https://doi.org/10.1016/j.engstruct.2007.10.018.
  16. Hibbitt, D., Karlsson, B. and Sorensen, P. (2003), ABAQUS/Standard User's Manual, version 6.4, ABAQUS. Inc., Pawtucket, RI.
  17. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modeling of concrete by using nonassociated plasticity", J. Mater. Civil Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199).
  18. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322).
  19. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K. C., Weng, Y.T. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  20. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  21. Moghaddam, H., Samadi, M. and Pilakoutas, K. (2010), "Compressive behavior of concrete actively confined by metal strips, part B: analysis", Mater. Struct., 43(10), 1383-1396. https://doi.org/10.1617/s11527-010-9589-5.
  22. Nematzadeh, M. and Haghinejad, A. (2017), "Analysis of actively-confined concrete columns using prestressed steel tubes", Comput. Concrete, 19(5), 477-488. https://doi.org/10.12989/cac.2017.19.5.477.
  23. Nematzadeh, M. and Naghipour, M. (2012), "Compressive strength and modulus of elasticity of freshly compressed concrete", Constr. Build. Mater., 34, 476-485. https://doi.org/10.1016/j.conbuildmat.2012.02.055.
  24. Nematzadeh, M., Fazli, S. and Hajirasouliha, I. (2017a), "Experimental study and calculation of laterally-prestressed confined concrete columns", Steel Compos. Struct., 23(5), 517-527. https://doi.org/10.12989/scs.2017.23.5.517.
  25. Nematzadeh, M., Naghipour, M., Jalali, J. and Salari, A. (2017b), "Experimental study and calculation of confinement relationships for prestressed steel tube-confined compressed concrete stub columns", J. Civil Eng. Manage., 23(6), 699-711. https://doi.org/10.3846/13923730.2017.1281837.
  26. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  27. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  28. Tao, Z., Uy, B., Liao, F.Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Constr. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
  29. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  30. Tokinoya, H., Tanaka, Y., Fukumoto, N., Murata, Y., Fujimoto, T. and Mukai, A. (1995), "Structural behavior of concrete filled steel tubular columns under axial compressive load, Part 3: Test results on circular columns", Abstracts of the Annual Convention of the Architectural Institute of Japan, 739-740. (in Japanese)
  31. Tomii, M. (1977), "Experimental studies on concrete filled steel tubular stub columns under concentric loading", Proceedings of International Colloquium on Stability of Structures Under Static and Dynamic Loads, SSRC/ASCE/Washington, DC.
  32. Yu, Q., Tao, Z., Liu, W. and Chen, Z.B. (2010), "Analysis and calculations of steel tube confined concrete (STCC) stub columns", J. Constr. Steel Res., 66(1), 53-64. https://doi.org/10.1016/j.jcsr.2009.08.003.
  33. Zhu, W.C., Ling, L., Tang, C.A., Kang, Y.M. and Xie, L.M. (2012), "The 3 D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression", Comput. Concrete, 9(4), 257-273. https://doi.org/10.12989/cac.2012.9.4.257.

Cited by

  1. Analysis-oriented model for seismic assessment of RC jacket retrofitted columns vol.37, pp.3, 2020, https://doi.org/10.12989/scs.2020.37.3.371
  2. Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber vol.26, pp.6, 2020, https://doi.org/10.12989/cac.2020.26.6.467