References
- Adachi, F., Yoshitomi, S., Tsuji, M. and Takewaki, I. (2013), "Nonlinear optimal oil damper design in seismically controlled multi-story building frame", Soil Dyn. Earthq. Eng., 44, 1-13. https://doi.org/10.1016/j.soildyn.2012.08.010.
- Agrawal, A.K. and Yang, J.N. (1999), "Design of passive energy dissipation systems based on LQR control methods", J. Intel. Mater. Syst. Struct., 10(12), 933-944. https://doi.org/10.1106%2FFB58-N1DG-ECJT-B8H4. https://doi.org/10.1106/fb58-n1dg-ecjt-b8h4
- Aiken, I. (1996), "Passive energy dissipation - hardware and applications", Proc., Los Angeles County and SEAOSC Symposium on Passive Energy Dissipation Systems for New and Existing Buildings, California, U.S.A.
- Apostolakis, G. and Dargush, G.F. (2010), "Optimal seismic design of moment-resisting steel frames with hysteretic passive devices", Earthq. Eng. Sturct. Dyn., 39(4), 355-376. https://doi.org/10.1002/eqe.944.
- ASCE/SEI 7-16 (2016), Minimum Design Loads for Buildings and Other Structures, Am. Soc. Civil Eng., Virginia, U.S.A.
- ASCE/SEI Standard 41-17 (2017), Seismic Rehabilitation of Existing Buildings, Am. Soc. Civil Eng., Virginia, U.S.A.
- ATC-58-1 (2008), Guidelines for Seismic Performance Assessment of Buildings, 50% Draft, Applied Technology Council, Washington D.C, U.S.A.
- British Standards Institution (1990), Steel, Concrete and Composite Bridges. Part 9. Bridge Bearings, Section 9.1 Code of Practice for Design of Bridge Bearings, BS5400, Section 9.1:1983, London, U.K.
- CEN (Comite Europeen de Normalization) (2004a), Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1-1, Brussels, Belgium.
- CEN (Comite Europeen de Normalization) (2004b), Eurocode 2: Design of Concrete Structures -Part 1-1: General Rules and Rules for buildings, EN 1992-1-2, Brussels, Belgium.
- Cho, C.G. and Kwon, M. (2004), "Development and modelling of a frictional wall damper and its applications in reinforced concrete frame structures", Earthq. Eng. Struct. Dyn., 33(7), 821-838. nhttps://doi.org/10.1002/eqe.379.
- Constantinou, M.C., Whittaker, A.S., Kalpakidis, Y., Fenz, D.M. and Warn, G.P. (2007), "Performance of seismic isolation hardware under service and seismic loading", Report No. MCEER-07-0012, Multidisciplinary Center for Earthquake Engineering Research, N.Y., U.S.A.
- Daniel, Y., Lavan, O. and Levy, R. (2013), "A simple methodology for the seismic passive control of irregular 3D frames using friction dampers", Seismic Behav. Des. Irreg. Compl. Civil Struct., 24, 285-295. https://doi.org/10.1007/978-94-007-5377-8_19.
- Filiatrault, A. and Cherry, S. (1990), "Seismic design spectra for friction-damped structures", J. Struct. Eng., 116(5), 1334-1355. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1334).
- Fujita, K., Moustafa, A. and Takewaki, I. (2010), "Optimal placement of viscoelastic dampers and supporting members under variable critical excitations", Earthq. Struct., 1(1), 43-67. https://doi.org/10.12989/eas.2010.1.1.043
- Ganjavi, B., Hajirasouliha, I. and Bolourchi, A. (2016), "Optimum lateral load distribution for seismic design of nonlinear shear-buildings considering soil-structure interaction", Soil Dyn. Earthq. Eng., 88, 356-368. https://doi.org/10.1016/j.soildyn.2016.07.003.
- Gidaris, I. and Taflanidis, A.A. (2015), "Performance assessment and optimization of fluid viscous dampers through life-cycle cost criteria and comparison to alternative design approaches", Bull. Earthq. Eng., 13(4), 1003-1028. https://doi.org/10.1007/s10518-014-9646-5.
- Gidaris, I., Taflanidis, A.A. and Mavroeidis, G.P. (2018), "Multiobjective design of supplemental seismic protective devices utilizing lifecycle performance criteria", J. Struct. Eng., 144(3), 040147225. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001969.
- Gluck, N., Reinhorn, A.M., Gluck, J. and Levy, R. (1996), "Design of supplemental dampers for control of structures", J. Struct. Eng., 122(12), 1394-1399. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1394).
- Guo, J.W.W. and Christopoulos, C. (2013), "Performance spectrabased method for the seismic design of structures equipped with passive supplemental damping systems", Earthq. Eng. Struct. Dyn., 42(6), 935-952. https://doi.org/10.1002/eqe.2261.
- Hajirasouliha, I. and Doostan, A. (2010), "A simplified model for seismic response prediction of concentrically braced frames", Adv. Eng. Softw., 41(3), 497-505. https://doi.org/10.1016/j.advengsoft.2009.10.008.
- Hajirasouliha, I. and Pilakoutas, K. (2012), "General seismic load distribution for optimum performance-based design of shear-buildings", J. Earthq. Eng., 16(4), 443-462. https://doi.org/10.1080/13632469.2012.654897.
- Hajirasouliha, I., Asadi, P. and Pilakoutas, K. (2012), "An efficient performance-based seismic design method for reinforced concrete frames", Earthq. Eng. Struct. Dyn., 41(4), 663-679. https://doi.org/10.1002/eqe.1150.
- Hajirasouliha, I., Pilakoutas, K. and Moghaddam, H. (2011), "Topology optimization for the seismic design of truss-like structures", Comput. Struct., 89(7-8), 702-711. https://doi.org/10.1016/j.compstruc.2011.02.003.
- Hall, J.F. (2006), "Problems encountered from the use (or misuse) of Rayleigh damping", Earthq. Eng. Struct. Dyn., 35(5), 525-545. https://doi.org/10.1002/eqe.541.
- Hejazi, F., Toloue, I., Jaafar, M.S. and Noorzaei, J. (2013), "Optimization of earthquake energy dissipation system by genetic algorithm", Comput. Aid. Civil Infr. Eng., 28(10), 796-810. https://doi.org/10.1111/mice.12047.
- Karavasilis, T.L. and Seo, C.Y. (2011), "Seismic structural and non-structural performance evaluation of highly damped self-centering and conventional systems", Eng. Struct., 33(8), 2248-2258. https://doi.org/10.1016/j.engstruct.2011.04.001.
- Kasagi, M., Fujita, K., Tsuji, M. and Takewaki, I. (2016), "Effect of non-linearity of connecting dampers on vibration control of connected building structures", Front. Built Environ., 1, 25. https://doi.org/10.3389/fbuil.2015.00025.
- Kasai, K., Fu, Y. and Watanabe, A. (1998), "Passive control systems for seismic damage mitigation", J. Struct. Eng., 124(5), 501-512. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(501).
- Kasai, K., Nishijima, M., Tanaka, K., Wang, S. and Mahin, S. (2018), "Simplified design method for frames with nonlinear viscous dampers", Proceedings of the 11th U.S. National Conference on Earthquake Engineering, California, U.S.A. June.
- Kim, J. and Choi, H. (2006), "Displacement-based design of supplemental dampers for seismic retrofit of a framed structure", J. Struct. Eng., 132(6), 873-883. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(873).
- Lavan, O. and Amir, O. (2014), "Simultaneous topology and sizing optimization of viscous dampers in seismic retrofitting of 3D irregular frame structures", Earthq. Eng. Struct. Dyn., 43(9), 1325-1342. https://doi.org/10.1002/eqe.2399.
- Lavan, O. and Dargush, G.F. (2009), "Multi-objective evolutionary seismic design with passive energy dissipation systems", J. Earthq. Eng. 13(6), 758-790. https://doi.org/10.1080/13632460802598545.
- Lavan, O. and Levy, R. (2010), "Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping", Earthq. Struct., 1(3), 307-326. https://doi.org/10.12989/eas.2010.1.3.307.
- Lavan, O. and Wilkinson, P.J. (2017), "Efficient Seismic Design of 3D asymmetric and Setback RC frame buildings for drift and strain limitation", J. Struct. Eng., 143(4), 04016205. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001689.
- Levy, R. and Lavan, O. (2006), "Fully stressed design of passive controllers in framed structures for seismic loadings", Struct. Multidiscip. Optim., 32(6), 485-498. https://doi.org/10.1007/s00158-005-0558-5.
- Liu, W., Tong, M. and Lee, G.C. (2005), "Optimization methodology for damper configuration based on building performance indices", J. Struct. Eng., 131(11), 1746-1756. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1746).
- Lu, Y., Hajirasouliha, I. and Marshall, A.M. (2016), "Performance-based seismic design of flexible-base multi-story buildings considering soil-structure interaction", Eng. Struct., 108, 90-103. https://doi.org/10.1016/j.engstruct.2015.11.031.
- MATLAB and Statistics Toolbox Release (2014), The Math Works, Natick, Massachusetts, USA.
- McKenna, F. (1997), "Object-oriented finite element programming: Frame-works for analysis, algorithms and parallel computing", Ph.D. Dissertation, University of California, Berkeley, California, U.S.A.
- McKenna, F. (2017), Open System for Earthquake Engineering Simulation, PEER.
- McKenna, F., Fenves, G.L. and Scott, M.H. (2000), "Open system for earthquake engineering simulation", University of California, Berkeley, California. http://opensees.berkeley.Edu.
- Miguel, L.F.F., Miguel, L.F.F. and Lopez, R.H. (2014), "Robust design optimization of friction dampers for structural response control", Struct. Control Hlth. Monit., 21(9), 1240-1251. https://doi.org/10.1002/stc.1642.
- Miguel, L.F.F., Miguel, L.F.F. and Lopez, R.H. (2016), "Simultaneous optimization of force and placement of friction dampers under seismic loading", Eng. Optim., 48(4), 586-602. https://doi.org/10.1080/0305215X.2015.1025774.
- Milman, M.H. and Chu, C.C. (1994), "Optimization methods for passive damper placement and tuning", J. Guid. Control Dyn., 17(4), 848-856. https://doi.org/10.2514/3.21275.
- Moghaddam, H. and Hajirasouliha, I. (2008), "Optimum strength distribution for seismic design", Struct. Des. Tall Spec Build., 17(2), 331-349. https://doi.org/10.1002/tal.356.
- Mohammadi, R.K. Mirjalaly, M., Mirtaheri, M. and Nazeryan, M. (2018), "Comparison between uniform deformation method and genetic algorithm for optimising mechanical properties of dampers", Earthq. Struct., 1(14), 1-10. https://doi.org/10.12989/eas.2018.14.1.001.
- Moreschi, L.M. and Singh, M.P. (2003), "Design of yielding metallic and friction dampers for optimal seismic performance", Earthq. Eng. Struct. Dyn., 32(8), 1291-1311. https://doi.org/10.1002/eqe.275.
- Murakami, Y., Noshi, K., Fujita, K., Tsuji, M. and Takewaki, I. (2013), "Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers", Earthq. Struct., 5(3), 261-276. https://doi.org/10.12989/eas.2013.5.3.261.
- Nabid, N., Hajirasouliha, I. and Petkovski, M. (2017), "A practical method for optimum seismic design of friction wall dampers", Earthq. Spectra, 33(3), 1033-1052. https://doi.org/10.1193%2F110316eqs190m. https://doi.org/10.1193/110316eqs190m
- Nabid, N., Hajirasouliha, I. and Petkovski, M. (2018), "Performance-based optimisation of RC frames with friction wall dampers using a low-cost optimisation method", Bull. Earthq. Eng., 16(10), 5017-5040. https://doi.org/10.1007/s10518-018-0380-2.
- Nabid, N., Hajirasouliha, I. and Petkovski, M. (2019a), "Adaptive low computational cost optimisation method for performance-based seismic design of friction dampers", Eng. Struct., 198, 109549. https://doi.org/10.1016/j.engstruct.2019.109549.
- Nabid, N., Hajirasouliha, I. and Petkovski, M. (2019b), "Simplified method for optimal design of friction damper slip loads by considering near-field and far-field ground motions", J. Earthq. Eng. 2019, 1-25. https://doi.org/10.1080/13632469.2019.1605316.
- Neuenhofer, A. and Filippou, F.C. (1997), "Evaluation of nonlinear frame finite-element models", J. Struct Eng., 123(7), 958-966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958).
- Papageorgiou, A., Halldorsson, B. and Dong, G. (2002), "TARSCTH (Target Acceleration Spectra Compatible Time Histories)", Engineering Seismology Laboratory, New York, U.S.A.
- Park, J.H., Kim, J. and Min, K.W. (2004), "Optimal design of added viscoelastic dampers and supporting braces", Eng. Struct. Dyn., 33(4), 465-484. https://doi.org/10.1002/eqe.359.
- PEER NGA, Online Database. Available from: http://peer.berkeley.edu/nga/search.html.
- Petkovski, M. and Waldron, P. (2003), "Optimum friction forces for passive control of the seismic response of multi-storey buildings", Proceedings of the 40 years of European Earthquake Engineering SE40EEE, Ohrid, Macedonia, August.
- Saitua, F., Lopez-Garcia, D. and Taflanidis, A.A. (2018), "Optimization of height-wise damper distributions considering practical design issues", Eng. Struct., 173, 768-786. https://doi.org/10.1016/j.engstruct.2018.04.008.
- Sasani, M. and Popov, E.P. (1997), "Experimental and analytical studies on the seismic behavior of lightweight concrete panels with friction energy dissipators", Earthquake Engineering Research Centre, Report No. UBC/EERC-97/17, California, U.S.A.
- Sasani, M. and Popov, E.P. (2001), "Seismic energy dissipators for RC panels", J. Eng. Mech., 127(8), 835-843. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(835).
- Singh, M.P. and Moreschi, L.M. (2001), "Optimal seismic response control with dampers", Earthq. Eng. Struct. Dyn., 30(4), 553-572. https://doi.org/10.1002/eqe.23.
- Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W., and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
- Takewaki, I. (2011), Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes, John Wiley and Sons, Singapore.
- Terzic, V. (2011), "Force-based element vs. displacement-based element", Pacific Earthquake Engineering Research Centre, California, U.S.A.
- Uetani, K., Tsuji, M. and Takewaki, I. (2003), "Application of an optimum design method to practical building frames with viscous dampers and hysteretic dampers", Eng. Struct., 25(5), 579-592. https://doi.org/10.1016/S0141-0296(02)00168-2.
- Whittle, J.K., Williams, M.S. and Karavasilis, T.L. (2013), "Optimal placement of viscous dampers for seismic building design", Des. Optim. Act. Pass. Struct. Control Syst., 34-49.
- Whittle, J.K., Williams, M.S. and Karavasilis, T.L., Blakeborough, A. (2012), "A comparison of viscous damper placement methods for improving seismic building design", J. Earthq. Eng., 16(4), 540-560. https://doi.org/10.1080/13632469.2011.653864.