DOI QR코드

DOI QR Code

Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios

  • Song, Jun Young (Korea Polar Research Institute) ;
  • Sim, Youngjong (Land and Housing Institute, Korea Land and Housing Corporation) ;
  • Yeom, Sun (Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, Jaewon (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Yun, Tae Sup (Department of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2019.03.19
  • 심사 : 2020.01.15
  • 발행 : 2020.01.25

초록

The enzyme-induced carbonate precipitation (EICP) method has been investigated to improve the hydro-mechanical properties of natural soil deposits. This study was conducted to explore the stiffness evolution during various stress scenarios. First, the optimal concentration of urea, CaCl2, and urease for the maximum efficiency of calcite precipitation was identified. The results show that the optimal recipe is 0.5 g/L and 0.9 g/L of urease for 0.5 M CaCl2 and 1 M CaCl2 solutions with a urea-CaCl2 molar ratio of 1.5. The shear stiffness of EICP-treated sands remains constant up to debonding stresses, and further loading induces the reduction of S-wave velocity. It was also found that the debonding stress at which stiffness loss occurs depends on the void ratio, not on cementation solution. Repeated loading-unloading deteriorates the bonding quality, thereby reducing the debonding stress. Scanning electron microscopy and X-ray images reveal that higher concentrations of CaCl2 solution facilitate heterogeneous nucleation to form larger CaCO3 nodules and 11-12 % of CaCO3 forms at the interparticle contact as the main contributor to the evolution of shear stiffness.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF), Korea Agency for Infrastructure Technology Advancement (KAIA)

This work was supported by the Land and Housing Institute (LHI) grant funded by the Korea Land and Housing Corporation, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2016R1A2B4011292), and the research fund of the Korea Agency for Infrastructure Technology Advancement (KAIA) (18CTAP-C142849-01).

참고문헌

  1. Al Qabany, A., Soga, K. and Santamarina, C. (2012), "Factors affecting efficiency of microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 138(8), 992-1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
  2. Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331-339. http://dx.doi.org/10.1680/geot.SIP13.P.022.
  3. Bahar, R., Benazzoug, M. and Kenai, S. (2004), "Performance of compacted cement-stabilised soil", Cem. Concrete Compos., 26(7), 811-820. https://doi.org/10.1016/j.cemconcomp.2004.01.003.
  4. Burbank, M.B., Weaver, T.J., Williams, B.C. and Crawford, R.L. (2012), "Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria", Geomicrobiol. J., 29(4), 389-395. https://doi.org/10.1080/01490451.2011.575913.
  5. Cha, M., Santamarina, J.C., Kim, H.S. and Cho, G.C. (2014), "Small-strain stiffness, shear-wave velocity, and soil compressibility", J. Geotech. Geoenviron. Eng., 140(10), 06014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157.
  6. Cheng, L. and Cord-Ruwisch, R. (2012), "In situ soil cementation with ureolytic bacteria by surface percolation", Ecol. Eng., 42, 64-72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
  7. Chu, J., Ivanov, V., Naeimi, M., Stabnikov, V. and Liu, H.L. (2014), "Optimization of calcium-based bioclogging and biocementation of sand", Acta Geotech., 9(2), 277-285. https://doi.org/10.1007/s11440-013-0278-8.
  8. Consoli, N.C., Prietto, P.D.M. and Ulbrich, L.A. (1998), "Influence of fiber and cement addition on behavior of sandy soil", J. Geotech. Geoenviron. Eng., 124(12), 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211).
  9. Cui, M.J., Zheng, J.J., Zhang, R.J., Lai, H.J. and Zhang, J. (2017), "Influence of cementation level on the strength behaviour of bio-cemented sand", Acta Geotech., 12(5), 971-986. https://doi.org/10.1007/s11440-017-0574-9.
  10. Cuthbert, M.O., Riley, M.S., Handley-Sidhu, S., Renshaw, J.C., Tobler, D.J., Phoenix, V.R. and Mackay, R. (2012), "Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation", Ecol. Eng., 41, 32-40. https://doi.org/10.1016/j.ecoleng.2012.01.008.
  11. De Muynck, W., De Belie, N. and Verstraete, W. (2010), "Microbial carbonate precipitation in construction materials: A review", Ecol. Eng., 36(2), 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
  12. DeJong, J.T., Fritzges, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
  13. Fernandez, A.L. and Santamarina, J.C. (2001), "Effect of cementation on the small-strain parameters of sands", Can. Geotech. J., 38(1), 191-199. https://doi.org/10.1139/t00-081.
  14. Hamdan, N.M. (2015), "Applications of enzyme induced carbonate precipitation (EICP) for soil improvement", Ph.D. Dissertation, Arizona State University, Tempe, Arizona, U.S.A.
  15. Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Geoenviron. Eng., 124(6), 492-499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
  16. Ismail, M.A., Joer, H.A., Sim, W.H. and Randolph, M.F. (2002), "Effect of cement type on shear behavior of cemented calcareous soil", J. Geotech. Geoenviron. Eng., 128(6), 520-529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520).
  17. Jiang, N.J., Soga, K. and Kuo, M. (2017), "Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures", J. Geotech. Geoenviron. Eng., 143(3), 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
  18. Kaniraj, S.R. and Havanagi, V.G. (2001), "Behavior of cementstabilized fiber-reinforced fly ash-soil mixture", J. Geotech. Geoenviron. Eng., 127(7), 574-584. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(574).
  19. Kavazanjian, E. and Hamdan, N. (2015), "Enzyme induced carbonate precipitation (EICP) columns for ground improvement", Proceedings of the International Foundations Congress and Equipment Expo 2015, San Antonio, Texas, U.S.A., March.
  20. Kim, Y.M., Kwon, T.H. and Kim, S. (2017), "Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy", Geomech. Eng., 12(5), 863-870. https://doi.org/10.12989/gae.2017.12.5.863.
  21. Lee, C., Truong, Q.H. and Lee, J.S. (2010), "Cementation and bond degradation of rubber-sand mixtures", Can. Geotech. J., 47(7), 763-774. https://doi.org/10.1139/T09-139.
  22. Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron. Eng., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
  23. Lin, H., Suleiman, M.T., Brown, D.G. and Kavazanjian, E. (2016), "Mechanical behavior of sands treated by microbially induced carbonate precipitation", J. Geotech. Geoenviron. Eng., 142(2), 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
  24. Mahawish, A., Bouazza, A. and Gates, W.P. (2018), "Effect of particle size distribution on the bio-cementation of coarse aggregates", Acta Geotech., 13(4), 1019-1025. https://doi.org/10.1007/s11440-017-0604-7
  25. Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
  26. Montoya, B.M., DeJong, J.T. and Boulanger, R.W. (2013), "Dynamic response of liquefiable sand improved by microbialinduced calcite precipitation", Geotechnique, 63(4), 302-312. http://dx.doi.org/10.1680/geot.SIP13.P.019.
  27. O'Rourke, T.D. and Crespo, E. (1988), "Geotechnical properties of cemented volcanic soil", J. Geotech. Eng., 114(10), 1126-1147. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1126)/
  28. Rios, S., Viana da Fonseca, A. and Baudet, B.A. (2014), "On the shearing behaviour of an artificially cemented soil", Acta Geotech., 9(2), 215-226. https://doi.org/10.1007/s11440-013-0242-7.
  29. Saxena, S.K., Reddy, K.R. and Avramidis, A.S. (1988), "Liquefaction resistance of artificially cemented sand", J. Geotech. Eng., 114(12), 1395-1413. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:12(1395).
  30. Somani, R.S., Patel, K.S., Mehta, A.R. and Jasra, R.V. (2006), "Examination of the polymorphs and particle size of calcium carbonate precipitated using still effluent (i.e., CaCl2+ NaCl solution) of soda ash manufacturing process", Ind. Eng. Chem. Res., 45(15), 5223-5230. https://doi.org/10.1021/ie0513447.
  31. van Paassen, L.A., Ghose, R., van der Linden, T.J.M., van der Star, W.R.L. and van Loosdrecht, M.C.M. (2010), "uantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
  32. Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soils Found., 52(3), 539-549. https://doi.org/10.1016/j.sandf.2012.05.011.
  33. Yun, T.S. and Santamarina, J.C. (2005), "Decementation, softening, and collapse: Changes in small-strain shear stiffness in k0 loading", J. Geotech. Geoenviron. Eng., 131(3), 350-358. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350).