Acknowledgement
Supported by : Natural Science Foundation of China, Natural Science Foundation of Hebei Province of China, Hebei Province of China
The research described in this paper was financially supported by the Natural Science Foundation of China (NO. 51878242), the Natural Science Foundation of Hebei Province of China (NO. E2017404013) and the Fund for fostering talents of Hebei Province of China (NO. A201901067).
References
- Avgerinos, V., Potts, D.M. and Standing, J.R. (2017), "Numerical investigation of the effects of tunnelling on existing tunnels", Geotechnique, 67(9), 808-822. https://doi.org/10.1680/jgeot.SiP17.P.103.
- Carpinteri, A. and Chiaia, B. (1996), "Power scaling laws and dimensional transitions in solid mechanics", Chaos Solitons Fractals, 7(9), 1343-1364. https://doi.org/10.1016/0960-0779(96)00016-1.
- Choi, J.I. and Lee, S.W. (2010), "Influence of existing tunnel on mechanical behavior of new tunnel", KSCE J. Civ. Eng., 14(5), 773-783. https://doi.org/10.1007/s12205-010-1013-8.
- Farghaly, A.A. and Kontoni, D.P.N. (2018), "Train induced dynamic response of a pedestrian tunnel under a four-track surface railway for different soil water contents", Geomech. Eng., 16(4), 341-353. https://doi.org/10.12989/gae.2018.16.4.341.
- Gharehdash, S. and Barzegar, M. (2015), "Numerical modeling of the dynamic behaviour of tunnel lining in shield tunneling", KSCE J. Civ. Eng., 19(6), 1626-1636. https://doi.org/10.1007/s12205-015-0406-0.
- Jin, D.L., Yuan, D.J., Li, X.G. and Zheng, H.T. (2018), "Analysis of the settlement of an existing tunnel induced by shield tunneling underneath", Tunn. Undergr. Sp. Technol., 81, 209-220. https://doi.org/10.1016/j.tust.2018.06.035.
- Jeon, S., Kim, J., Seo, Y. and Hong, C. (2004), "Effect of a fault and weak plane on the stability of a tunnel in rock - a scaled model test and numerical analysis", Int. J. Rock Mech. Min. Sci., 41(3), 486-486. https://doi.org/10.1016/j.ijrmms.2003.12.021.
- Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2005), "Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions", Geotechnique, 55(6), 461-466. https://doi.org/10.1680/geot.2005.55.6.461.
- Lai, J.X., Wang, K.Y., Qiu, J.L., Niu, F.Y., Wang, J.B. and Chen, J.X. (2016), "Vibration response characteristics of the cross tunnel structure", Shock Vib. https://doi.org/10.1155/2016/9524206.
- Liu, H.Y., Small, J.C., Carter, J.P. and Williams, D.J. (2009), "Effects of tunnelling on existing support systems of perpendicularly crossing tunnels", Comput. Geotech., 36(5), 880-894. https://doi.org/10.1016/j.compgeo.2009.01.013.
- Liu, N., Peng, L.M., Shi, C.H. and Lei, M.F. (2016), "Experimental and model study on dynamic behaviour and fatigue damage of tunnel invert", Constr. Build. Mater., 126, 777-784. https://doi.org/10.1016/j.conbuildmat.2016.09.081.
- Nawel, B. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
- Ng, C.W.W., Boonyarak, T. and Masin, D. (2013), "Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels", Can. Geotech. J., 50(9), 935-946. https://doi.org/10.1139/cgj-2012-0445.
- Ng, C.W.W., Wang, R. and Boonyarak, T. (2016), "A comparative study of the different responses of circular and horseshoe-shaped tunnels to an advancing tunnel underneath", Geotech. Lett., 6(2), 168-175. https://doi.org/10.1680/jgele.16.00001.
- Pak, R.Y.S. and Guzina, B.B. (1995), "Dynamic characterization of vertically loaded foundations on granular soils", J. Geotech. Eng., 121(3), 274-286. https://doi.org/10.1061/(asce)0733-9410(1995)121:3(274).
- Vorster, T.E.B., Klar, A., Soga, K. and Mair, R.J. (2005), "Estimating the effects of tunneling on existing pipelines", J. Geotech. Geoenviron. Eng., 131(11), 1399-1410. https://doi.org/10.1061/(asce)1090-0241(2005)131:11(1399).
- Yan, Q.X., Song, L.Y., Chen, H., Chen, W.Y., Ma, S.Q. and Yang, W.B. (2018), "Dynamic response of segment lining of overlapped shield tunnels under train-induced vibration loads", Arab. J. Sci. Eng., 43(10), 5439-5455. https://doi.org/10.1007/s13369-018-3147-9.
- Yang, W.B., Chen, Z.Q., Xu, Z.Y., Yan, Q.X., He, C. and Kai, W. (2018), "Dynamic response of shield tunnels and surrounding soil induced by train vibration", Rock Soil Mech., 39(2), 537-545. https://doi.org/10.16285/j.rsm.2016.0941.
- Yang, W.B., Cui, G., Xu, Z.Y., Yan, Q.X., He, C. and Zhang, Y.Y. (2018), "An experimental study of ground-borne vibration from shield tunnels", Tunn. Undergr. Sp. Technol., 71, 244-252. https://doi.org/10.1016/j.tust.2017.08.020.
- Yi, H.Y., Qi, T.Y., Qian, W.P., Lei, B., Pu, B.R., Yu, Y.Y., Liu, Y.X. and Li, Z.Y. (2019), "Influence of long-term dynamic load induced by high-speed trains on the accumulative deformation of shallow buried tunnel linings", Tunn. Undergr. Sp. Technol., 84, 166-176. https://doi.org/10.1016/j.tust.2018.11.005.
- Zhang, Z.G. and Huang, M.S. (2014), "Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil", Comput. Geotech., 56, 121-132. https://doi.org/10.1016/j.compgeo.2013.11.008.
- Zhang, Z.Q., Zeng, B.W., Da, C.L. and He, W.P. (2018), "Study on structural service performance of heavy-haul railway tunnel with voided base", Adv. Civ. Eng. https://doi.org/10.1155/2018/3510979.
Cited by
- Model Test and Numerical Simulation of Single Pile Response under Combined Loading in Slope vol.10, pp.17, 2020, https://doi.org/10.3390/app10176140