Acknowledgement
Supported by : Ministry of Land, Infrastructure and Transport of Korean Government
The research described in this paper was financially supported by Ministry of Land, Infrastructure and Transport of Korean Government (Grant 20CTAP-C143093-03).
References
- Alavi, A.H., Gandomi, A.H., Mousavi, M. and Mollahasani, A. (2010), "High-precision modeling of uplift capacity of suction caissons using a hybrid computational method", Geomech. Eng., 2(4), 253-280. https://doi.org/10.12989/gae.2010.2.4.253.
- Alkroosh, I. and Nikraz, H. (2011), "Simulating pile loadsettlement behavior from CPT data using intelligent computing", Centr. Eur. J. Eng., 1(3), 295-305. https://doi.org/10.2478/s13531-011-0029-2.
- Alvarez Grima, M. and Babuska, R. (1999), "Fuzzy model for the prediction of unconfined compressive strength of rock samples", Int. J. Rock Mech. Min. Sci., 36(3), 339-349. https://doi.org/10.1016/S0148-9062(99)00007-8.
- Anagnostopoulos, A.G., Papadopoulos, B.P. and Kavvadas, M.J. (1991), "Direct estimation of settlements on sand, based on SPT results", Proceeding of the 10th European Conference on Soil Mechacnics and Foundation Engineering, Florence, Italy, May.
- Berardi, R., Jamiolkowski, M. and Lancellotta, R. (1991), "Settlement of shallow foundations in sand selection of stiffness on the basis of penetration resistance", Proceedings of the Geotechnical Engineering Congress, Boulder, Colorado, U.S.A., June.
- Bernstein, J., Wang, Y.X., Azizzadenesheli, K. and Anandkumar, A. (2018), "signSGD: Compressed optimisation for non-convex problems", arXiv preprint arXiv:1802.04434.
- Briaud, J.L. and Gibbens, R.M. (1994), "Predicted and measured behavior of five spread footings on sand", Geotech. Spec. Publ., 41, 255.
- Burbidge, M.C. (1982), "A case study review of settlement on granular soil", M.Sc. Thesis, Imperial College of Science and Technology, University of London, London, U.K.
- Burland, J.B. and Burbidge, M.C. (1985), "Settlement of foundations on sand and gravel", Proc. Inst. Civ. Eng., 78(6), 1325-1381. https://doi.org/10.1680/iicep.1985.1058.
- Celik, S. and Tan, O. (2005), "Determination of preconsolidation pressure with artificial neural network", Civ. Eng. Environ. Syst., 22(4), 217-231. https://doi.org/10.1080/10286600500383923.
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "Bending moment prediction for continuouscomposite beams by neural networks", Adv. Struct. Eng., 10(4), 439-454. https://doi.org/10.1260/136943307783239390.
- Chern, S.G. and Lee, C.Y. (2008), "CPT-based simplified liquefaction assessment by using fuzzy-neural network", J. Mar. Sci. Technol., 16(2), 139-148.
- Cho, S.E. (2009), "Probabilistic stability analyses of slopes using the ANN-based response surface", Comput. Geotech., 36(5), 787-797. https://doi.org/10.1016/ j.compgeo.2009.01.003.
- Cybenko, G. (1989), "Approximations by super positions of sigmoidal functions", Math. Control. Signals Syst., 2(4), 303-314. https://doi.org/10.1007/bf02551274.
- Das, B. and Sivakugan, N. (2007), "Settlements of shallow foundations on granular soil - an overview", Int. J. Geotech. Eng., 1(1), 19-29. https://doi.org/10.3328/ 10.3328/IJGE.2007.01.01.19-29.
- Das, S.K. and Basudhar, P.K. (2006), "Undrained lateral load capacity of piles in clay using artificial neural network", Comput. Geotech., 33(8), 454-459. https://doi.org/10.1016/j.compgeo.2006.08.006.
- Das, S.K., Biswal, R.K., Sivakugan, N. and Das, B. (2011), "Classification of slopes and prediction of factor of safety using differential evolution neural networks", Environ. Earth Sci., 64(1), 201-210. https://doi.org/ 10.1007/s12665-010-0839-1.
- Dincer, I. (2011), "Models to predict the deformation modulus and the coefficient of subgrade reaction for earth filling structures", Adv. Eng. Softw., 42(4), 160-171. https://doi.org/10.1016/j.advengsoft.2011.02.001.
- Duchi, J., Hazan, E. and Singer, Y. (2011), "Adaptive subgradient methods for online learning and stochastic optimization", J. Mach. Learn. Res., 12, 2121-2159.
- Erzin, Y. and Cetin, T. (2014), "The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions", Geomech. Eng., 6(1), 1-15. https://doi.org/10.12989/gae.2014.6.1.001.
- Erzin, Y. and Ecemis, N. (2017), "The use of neural networks for the prediction of cone penetration resistance of silty sands", Neural Comput. Appl., 28(1), 727-736. https://doi.org/10.1007/s00521-016-2371-z.
- Fei, S., Tan, X., Wang, X., Du, L. and Sun, Z. (2019), "Evaluation of soil spatial variability by micro - structure simulation", Geomech. Eng., 17(6), 565-572. https://doi.org/10.12989/gae.2019.17.6.565.
- Gandomi, A.H. and Alavi, A.H. (2012), "A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems", Neural Comput. Appl., 21(1), 171-187. https://doi.org/10.1007/s00521-011-0734-z.
- Garcia, S.R., Romo, M.P. and Figueroa-Nazuno, J. (2006), "Soil dynamic properties determination: A neurofuzzy system approach", Control Intell. Syst., 34(1), 2121-2159.
- Goh, A. (1994), "Seismic liquefaction potential assessed by neural networks", J. Geotech. Eng., 120(9), 1467-1480. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467).
- Gonzalez, M.P. and Zapico, J.L. (2008), "Seismic damage identification in buildings using neural networks and modal data", Comput. Struct., 86(3), 416-426. https://doi.org/10.1016/j.compstruc.2007.02.021.
- Haque, M.E. and Sudhakar, K.V. (2002), "ANN back-propagation prediction model for fracture toughness in microalloy steel", Int. J. Fatigue, 24(9), 1003-1010. https://doi.org/10.1016/S0142-1123(01)00207-9.
- Hertz, J., Krogh, A. and Palmer, R.G. (1992), Introduction to the Theory of Neural Computation, Addison-Wesley Pub. Co., Redwood City, California, U.S.A.
- Javadi, A.A. and Rezania, M., (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.
- Jorden, E., (1977), "Settlement in sand-methods of calculating and factors affecting", Ground Eng., 10(1), 30-67. https://doi.org/10.1139/t06-029.
- Kaastra, I. and Boyd, M. (1996), "Designing a neural network for forecasting financial and economic time series", Neurocomputing, 10(3), 215-236. https://doi.org/ 10.1016/0925-2312(95)00039-9.
- Kamatchi, P., Rajasankar, J., Ramana, G.V. and Nagpal, A.K. (2010), "A neural network based methodology to predict sitespecific spectral acceleration values", Earthq. Eng. Eng. Vib., 9(4), 459-472. https://doi.org/10.1007/ s11803-010-0041-1.
- Kanellopoulos, I. and Wilkinson, G.G. (1997), "Strategies and best practice for neural network image classification", Int. J. Remote Sens., 18(4), 711-725. https://doi.org/ 10.1080/014311697218719.
- Kingma, D. and Ba, J. (2015), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
- Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS - MARS method for predicting the ultimate load - carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concrete, 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
- Maail, S. (1987), "Comparion of methods of predicting foundation settlement of sand and gravel", Proceedings of the 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, December.
- Maugeri, M., Castelli, F., Massimino, M.R. and Verona, G. (1998), "Observed and computed settlements of twoshallow foundations on sand", J. Geotech. Geoenviron. Eng., 124(7), 595-605. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(595).
- Meyerhof, G.G. (1956), "Penetration tests and bearing capacity of cohesionless soils", J. Soil Mech. Div., 82(1), 1-12. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(478).
- Meyerhof, G.G. (1965), "Shallow foundations", J. Soil Mech. Found. Div., 91(2), 21-32. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(478).
- Meyerhof, G.G. (1974), "General report: State-of-the-art of penetration testing in countries outside Europe", Proceedings of the 1st European Symposium on Penetration Testing, Stockholm, Sweden.
- Samu, P. and Thallak, S. (2011), "Determination of liquefaction susceptibility of soil based on field test and artificial intelligence", Int. J. Earth Sci., 4(2), 216-222.
- Schmertmann, J.H. (1970), "Static cone to compute static settlement over sand", J. Soil Mech. Found. Div., 96(3), 1011-1043. https://doi.org/10.1061/JSFEAQ.0001418
- Schultze, E. and Sherif, G. (1973), "Prediction of settlements from evaluated settlement observation for sand", Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia, August.
- Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2002), "Predicting settlement of shallow foundations using neural networks", J. Geotech. Geoenviron. Eng., 128(9), 785-793. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(785).
- Shahin, Mohamed, A. (2010), "Intelligent computing for modeling axial capacity of pile foundations", Can. Geotech. J., 47(2), 230-243. https://doi.org/10.1139/T09-094.
- Shahrbanouzadeh, M., Barani, G.A. and Shojaee, S. (2015), "Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam", Geomech. Eng., 9(4), 465-481. https://doi.org/10.12989/gae.2015.9.4.465.
- Sivakugan, N. and Johnson, K. (2004), "Settlement predictions in granular soils: a probabilistic approach", Geotechnique, 54(7), 499-502. https://doi.org/10.1680/geot.2004.54.7.499.
- Sivapullaiah, P.V., Guru Prasad, B. and Allam, M.M. (2009), "Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks", Geomech. Eng., 1(4), 307-321. https://doi.org/10.12989/gae.2009.1.4.307.
- Terzaghi, K. and Peck, R.B. (1968), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, U.S.A.
- Thai, D.K., Tu, T.M., Bui, T.Q. and Bui, T.T. (2019), "Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00842-w.
- Tsompanakis, Y., Lagaros, N.D. and Stavroulakis, G.E. (2008), "Soft computing techniques in parameter identification and probabilistic seismic analysis of structures", Adv. Eng. Softw., 39(7), 612-624. https://doi.org/10.1016/j.advengsoft.2007.06.004.
- Wahls, H.E. (1997), "Settlement of shallow foundations in sandsselection of stiffness on the basis of penetration resistance", Proceeding of the 3rd International Geotechnical Engineerign Conference, Cairo, Egypt.
- Zeiler, M.D. (2012), "ADADELTA: An adaptive learning rate method", arXiv preprint arXiv:1212.5701.
Cited by
- Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2020, https://doi.org/10.12989/gae.2021.25.1.059
- Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461