지하수자원 취약성 평가 지수 연구

  • 양정석 (국민대학교 건설시스템공학과) ;
  • 김일환 (국민대학교 건설시스템공학과)
  • Published : 2020.01.15

Abstract

Keywords

References

  1. Aller, L.,T. Bennett, J.H. Lehr, R.J. Petty, and G. Hackett. (1987). DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings. Environmental Protection Agency NWWA/EPA Series EPA-600/2-87-035. Dublin, Ireland: National Water Well Association.
  2. Al-Zabet, T. (2002). "Evaluation of Aquifer Vulnerability to Contamination Potential Using the DRASTIC Method". Environmental Geology, 43, 203-208. https://doi.org/10.1007/s00254-002-0645-5
  3. Babiker, I. S., Mohamed, M. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Science of the Total Environment, 345,127-140. https://doi.org/10.1016/j.scitotenv.2004.11.005
  4. Civita, M (1994) Le Carte della vulnerabilita degli acquiferi all'inquinamento: teoria&pratica [Aquifer vulnerability to pollution maps: theory and practice]. Pitagora, Bologna, Italy
  5. Civita, M. and De Maio, M., (2004). Assessing and mapping groundwater vulnerability to contamination: The Italian "combined" approach, Geof' sica International 43(4), 513-532.
  6. Gogu, R.C., and Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods, Environmental Geology, 39(6), p.549-559. https://doi.org/10.1007/s002540050466
  7. Hamza, S. M., Ahsan, A., Imteaz, M. A., Rahman, A., Mohammad, T. A., & Ghazali, A. H. (2015). Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: A review. Environmental Earth Sciences, 73, 3063-3076. https://doi.org/10.1007/s12665-014-3601-2
  8. Howard, K., Gerber, R., (2018). Impacts of urban areas and urban growth on groundwater in the Great Lakes Basin of North America. J. Gt. Lakes Res. 44 (1), 1-13. https://doi.org/10.1016/j.jglr.2017.11.012
  9. Huan, H.,Wang, J., & Teng, Y. (2012). Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Science of the Total Environment, 440, 14-23. https://doi.org/10.1016/j.scitotenv.2012.08.037
  10. Kumar, D.M., Shah, T. (2006). "Groundwater pollution and contamination in India: the emerging challenge". IWMI-TATA Water Policy Program Draft Paper-1,p. 14.
  11. Kumar, P., Bansod, B.K., Debnath, S.K., Thakur, R.K., Ghanshyam, C., (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environ. Impact Assess. Rev. 51, 38-49. https://doi.org/10.1016/j.eiar.2015.02.001
  12. Kura, N.U., Ramli, M.F., Ibrahim, S., Sulaiman, W.N.A., Aris, A.Z., Tanko, A.I., and Zaudi, M.A. (2014). Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods, Environmental Science and Pollution Research.
  13. Melloul, A., & Collin, M. (1992). The 'principal components' statistical method as a complementary approach togeochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. Journal of Hydrology, 140, 49-73. https://doi.org/10.1016/0022-1694(92)90234-M
  14. National Research Council, (1993). Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty, National Academy Press, Washington, DC, p. 42-63.
  15. Nlend, B., Celle-Jeanton, H., Huneau, F., Ketchemen-Tandia, B., Fantong, W.Y., Boum-Nkot, S.N., Etame, J., (2018). The impact of urban development on aquifers in large coastal cities of West Africa: present status and future challenges. Land Use Pol. 75, 352-363. https://doi.org/10.1016/j.landusepol.2018.03.007
  16. Okkonen, J. and Klove, B. (2011). A sequential modeling approach to assess groundwater surface water resources in a snow dominated region of Finland. J. Hydrol. 411, 91-107. https://doi.org/10.1016/j.jhydrol.2011.09.038
  17. Luoma, S., Okkonen, J., and Korkka-Niermi, K. (2017). Comparison of the AVI, SIN1ACS and GALDIT vulnerability methods under climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeology journal No.25 pp.203-222
  18. Shrestha, S., Semkuyu, D.J. and Pandey,V.R. (2016) Assessment of Groundwater Vulnerability and Risk to Pollution in Kathmandu Valley, Nepal. Science of the Total Environment, 556, 23-35. https://doi.org/10.1016/j.scitotenv.2016.03.021
  19. Sinha, M.K., Verma, M.K., Ahmad, I., Baier, K. Jha, R. and Azzam, R. (2016). Assessment of Groundwater Vulnerability Using Modified DRASTIC Model in Kharun Basin, Chhattisgarh, India. Arabian Journal of Geosciences, 9,1-22. https://doi.org/10.1007/s12517-015-2098-7
  20. Uricchio, V.F., Giordano, R., and Lopez, N. (2004). A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation, Journal of Environmental Management, 73, p.189-197. https://doi.org/10.1016/j.jenvman.2004.06.011
  21. Villeneuve, J., Banton, O. and Lafrance, P. (1990). A Probabilistic Approach for the Groundwater Vulnerability to Contamination by Pesticides: The Vulpest Model. Ecological Modelling , 51, 47-58. https://doi.org/10.1016/0304-3800(90)90057-N
  22. WHO (World Health Organization) (2014). "Guidelines for drinking water quality: Fourth edition." Geneva, Switzerland, WHO. Progress on Drinking Water and Sanitation: 2014 Update. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation, New York.
  23. Yang, J. S. and Kim, I. H. (2012). "Development of drought vulnerability index using delphi method considering climate change and trend analysis in Nakdong river basin" Journal of Korea Water Resources Association, Vol.33 No.6, pp.2245-2254.