DOI QR코드

DOI QR Code

A Suitability Study on the Indicator Isotopes for Graphite Isotope Ratio Method (GIRM)

흑연 동위원소 비율법의 지표 동위 원소 적합성 연구

  • Received : 2019.12.24
  • Accepted : 2020.03.19
  • Published : 2020.03.30

Abstract

The Graphite Isotope Ratio Method (GIRM) can verify non-proliferation of nuclear weapon by estimating the total plutonium production in a graphite-moderated reactor. Using the reactor, plutonium is generated and accumulated through the 238U neutron capture reaction, and impurities in the graphite are converted to nuclides due to the nuclear reaction. Therefore, the amount of plutonium production and concentration of the impurities are correlated. However, the plutonium production cannot be predicted using only the absolute concentration of the impurities. It can only be predicted when the initial concentration of the impurities is obtained because the concentration, at a certain time, depends on it. Nevertheless, the ratios of the isotopes in an element are known regardless of the impurity of an element in the graphite moderator. Thus, the correlation between the isotope ratio and amount of plutonium produced helps predict plutonium production in a graphite-moderated reactor. Boron, Lithium, Chlorine, Titanium, and Uranium are known as indicator elements in the GIRM. To assess whether the correlation between the indicator isotope and amount of plutonium produced is independent of the initial concentration of the impurities, four different impurity compositions of graphite were used. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, and 235U/238U had a consistent correlation with the cumulative plutonium production, regardless of the initial impurity concentration of the graphite, because these isotopes were not generated through the nuclear reaction of other elements. On the other hand, the correlation between 6Li/7Li and plutonium production depended on the initial concentration of the impurities in graphite. Although 7Li can be produced through the neutron capture reaction of 6Li, the (n, α) reaction of 10B was the major source of 7Li. Therefore, the initial concentration of 10B affected the production of 7Li, making Li unsuitable as an indicator element for the GIRM.

흑연 동위원소 비율법(GIRM)은 비핵화 검증 도구로써 흑연감속로의 플루토늄 생산량을 예측하는데 사용된다. 원자로가 가동되면 238U의 중성자 포획 반응에 의해 플루토늄이 생성되어 축적되고 동시에 흑연 내 불순물도 핵반응을 통해 다른 핵종으로 바뀌기 때문에 플루토늄의 생성량과 불순물의 농도는 일정한 상관 관계를 갖는다. 이러한 상관관계에도 불구하고 어느 특정 시점에서의 불순물의 농도는 불순물의 초기 농도에 의존하기 때문에 불순물의 초기 농도가 알려지지 않으면 불순물의 절대 농도만으로 플루토늄 생산량을 예측하는 것은 불가능하다. 그러나 불순물의 초기 동위원소 비율은 초기 불순물 농도에 상관없이 알려져 있기 때문에 불순물의 동위원소 비율과 플루토늄 생산량의 관계는 흑연감속로에서 플루토늄 생성량을 예측하는 유용한 도구가 될 수 있다. 흑연동위원소 비율법의 지표 원소로 Boron, Lithium, Chlorine, Titanium, Uranium 등이 이용되는 것으로 알려져 있다. 위 지표원소의 동위원소 비와 플루토늄 생성량 사이의 상관 관계가 초기 불순물 농도에 의존하지 않는지를 네 가지 다른 흑연 불순물 조성을 이용하여 평가하였다. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, 235U/238U은 흑연의 초기 불순물 농도에 상관없이 누적 플루토늄 생성량과 일관된 상관 관계를 갖는다. 이러한 원소들은 다른 원소의 핵반응에 의해 해당 원소의 동위원소가 생성되지 않기 때문이다. 반면 6Li/7Li과 플루토늄 생성량의 상관관계는 흑연 내 불순물의 초기 농도에 의존한다. 7Li은 6Li의 중성자 포획 반응에 의해서 생성되기도 하지만 10B의 (n, α)반응으로도 생성되는 것이 더 지배적이기 때문에 10B의 초기 농도가 7Li의 생성량에 영향을 미치는 것이다. 따라서 Lithium은 흑연 동위원소 비율법을 위한 지표 원소로 적절하지 않음을 알 수 있다.

Keywords

References

  1. J.P. McNeece, B.D. Reid, and T.W. Wood, "The Graphite Isotope Ratio Method (GIRM): A Plutonium Production Verification Tool", PNNL-12095, Pacific Northwest National Lab (1999).
  2. B.D. Reid, W.C. Morgan, E.F. Love, Jr, D.C. Gerlach, S.L. Petersen, J.V. Livingston, L.R. Greenwood and J.P. McNeece, "Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator", PNNL-13056, Pacific Northwest National Lab (1999).
  3. T.W. Wood, D.C. Gerlach, B.D. Reid, and W.C. Morgan, "Feasibility of Isotopic Measurements: Graphite Isotope Ratio Method", PNNL-13488, Pacific Northwest National Lab (2001).
  4. C.J. Gesh, "A Graphite Isotope Ratio Method Primer-A Method for Estimating Plutonium Production in Graphite Moderated Reactors", PNNL-14568, Pacific Northwest National Lab (2004).
  5. Greg Black, "IRRADIATED GRAPHITE WASTE-Analysis and Modelling of Radionuclide Production with a View to Long Term Disposal", Dissertation, The University of Manchester (2014).
  6. B. D. Murphy, "ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs", ORNL/TM-2003/263, Oak Ridge National Laboratory (2004).
  7. D. Ancius, D. Ridikas, V. Remeikis, A. Plukis, R. Plukiene, and M. Cometto, "Evaluation of the activity of irradiated graphite in the Ignalina Nuclear Power Plant RBMK-1500 reactor", NUKLEONIKA., 50(3), 113-120 (2005).