DOI QR코드

DOI QR Code

Towards Real-time Multi-object Tracking in CPU Environment

CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템

  • Kim, Kyung Hun (Dept. of Electronic Engineering, Sogang University) ;
  • Heo, Jun Ho (Dept. of Electronic Engineering, Sogang University) ;
  • Kang, Suk-Ju (Dept. of Electronic Engineering, Sogang University)
  • Received : 2020.01.14
  • Accepted : 2020.03.03
  • Published : 2020.03.30

Abstract

Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

최근 딥러닝 모델을 기반으로 한 객체 추적 알고리즘의 활용도가 증가하고 있다. 영상에서의 다중 객체의 추적을 위한 시스템은 대표적으로 객체 검출 알고리즘과 객체 추적 알고리즘의 연쇄된 형태로 구성되어있다. 하지만 여러 모듈로 구성된 연쇄 형태의 시스템은 고성능 컴퓨팅 환경을 요구하며 실제 어플리케이션으로의 적용에 제한사항으로 존재한다. 본 논문에서는 위와 같은 객체 검출-추적의 연쇄 형태의 시스템에서 객체 검출 모듈의 연산 관련 프로세스를 조정하여 저성능 컴퓨팅 환경에서도 실시간 동작을 가능하게 하는 방법을 제안한다.

Keywords

References

  1. Betke, Margrit, Esin Haritaoglu, and Larry S. Davis. "Real-time multiple vehicle detection and tracking from a moving vehicle." Machine vision and applications 12.2 (2000): 69-83. https://doi.org/10.1007/s001380050126
  2. Hu, Weiming, et al. "A survey on visual surveillance of object motion and behaviors." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34.3 (2004): 334-352. https://doi.org/10.1109/TSMCC.2004.829274
  3. Lu, Wei-Lwun, et al. "Learning to track and identify players from broadcast sports videos." IEEE transactions on pattern analysis and machine intelligence 35.7 (2013): 1704-1716. https://doi.org/10.1109/TPAMI.2012.242
  4. Murray, Samuel. "Real-time multiple object tracking-A study on the importance of speed." arXiv preprint arXiv:1709.03572 (2017).
  5. Luo, Wenhan, et al. "Multiple object tracking: A literature review." arXiv preprint arXiv:1409.7618 (2014).
  6. Bernardin, Keni, and Rainer Stiefelhagen. "Evaluating multiple object tracking performance: the CLEAR MOT metrics." EURASIP Journal on Image and Video Processing 2008 (2008): 1-10.
  7. Ristani, Ergys, et al. "Performance measures and a data set for multi-target, multi-camera tracking." European Conference on Computer Vision. Springer, Cham, 2016.
  8. Milan, Anton, et al. "MOT16: A benchmark for multi-object tracking." arXiv preprint arXiv:1603.00831 (2016).
  9. Wojke, Nicolai, Alex Bewley, and Dietrich Paulus. "Simple online and realtime tracking with a deep association metric." 2017 IEEE international conference on image processing (ICIP). IEEE, 2017. doi: 10.1109/ICIP.2017.8296962
  10. Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  11. A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, "Simple online and realtime tracking," 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, 2016, pp. 3464-3468. doi: 10.1109/ICIP.2016.7533003
  12. LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. doi: 10.1109/5.726791
  13. Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
  14. Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Vol. 1. IEEE, 2005.
  15. Lowe, David G. "Object recognition from local scale-invariant features." Proceedings of the seventh IEEE international conference on computer vision. Vol. 2. Ieee, 1999.
  16. Horn, Berthold KP, and Brian G. Schunck. "Determining optical flow." Techniques and Applications of Image Understanding. Vol. 281. International Society for Optics and Photonics, 1981.
  17. Viola, Paul, and Michael Jones. "Rapid object detection using a boosted cascade of simple features." Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. Vol. 1. IEEE, 2001.
  18. He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE transactions on pattern analysis and machine intelligence 37.9 (2015): 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
  19. Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.
  20. Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
  21. Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.
  22. Kuhn, Harold W. "The Hungarian method for the assignment problem." Naval research logistics quarterly 2.1-2 (1955): 83-97. https://doi.org/10.1002/nav.3800020109
  23. Wojke, Nicolai, and Alex Bewley. "Deep cosine metric learning for person re-identification." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018.