DOI QR코드

DOI QR Code

The Effect of Calcination/reduction Condition Over Ru/TiO2 on the NH3-SCO Reaction Activity

소성/환원 조건이 Ru/TiO2의 NH3-SCO 반응활성에 미치는 영향

  • Shin, Jung Hun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2020.01.09
  • Accepted : 2020.01.28
  • Published : 2020.02.10

Abstract

In this study, NH3-selective catalytic oxidation (SCO) efficiencies according to calcination/reduction conditions were compared when preparing various Ru[1]/TiO2 catalysts. The Ru[1]/TiO2 red catalyst had better NH3 conversion and NH3 to N2 conversion than those of Ru[1]/TiO2 cal. Physico-chemical properties of Ru[1]/TiO2 catalysts were confirmed by Brunauer Emmett Teller (BET), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (H2-TPR) analyses, and the properties were shown to affect the dispersion and surface adsorption oxygen species (Oβ) ratio of the active metal.

본 연구에서는, Ru[1]/TiO2 촉매 제조 시 소성/환원 조건에 따른 NH3-SCO (selective catalytic oxidation) 효율을 비교하였다. Ru[1]/TiO2 red는 Ru[1]/TiO2 cal에 비하여 NH3 전환율 및 NH3의 N2 전환율이 우수하였다. Ru[1]/TiO2 촉매의 물리·화학적 특성은 BET, XRD, TEM, XPS, H2-TPR 분석에 의해 확인되었으며, 활성금속의 분산도와 표면 흡착 산소종(Oβ)의 비율에 영향을 미치는 것으로 나타났다.

Keywords

References

  1. J. X. Warner, R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, Increased atmospheric ammonia over the world's major agricultural areas detected from space, Geophys. Res. Lett., 44, 2875-2884 (2017). https://doi.org/10.1002/2016GL072305
  2. J. Y. Lee, S. B. Kim, and S. C. Hong, Characterization, and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen, Chemosphere, 50, 1115-1122 (2003). https://doi.org/10.1016/S0045-6535(02)00708-7
  3. M. J. Lippits, A. C. Gluhoi, and B. E. Nieuwenhuys, A comparative study of the selective oxidation of $NH_3$ to $N_2$ over gold, silver and copper catalysts and the effect of addition of $Li_2O$ and CeOx, Catal. Today, 137, 446-452 (2008). https://doi.org/10.1016/j.cattod.2007.11.021
  4. S. A. C. Carabineiro, A. V. Matveev, V. V. Gorodetskii, and B. E. Nieuwenhuys, Selective oxidation of ammonia over Ru(0001), Surf. Sci., 555, 83-93 (2004). https://doi.org/10.1016/j.susc.2004.02.022
  5. R. Q. Long and R. T. Yang, Selective catalytic oxidation of ammonia to nitrogen over $Fe_2O_3$-$TiO_2$ prepared with a Sol-Gel method, J. Catal., 207, 158-165 (2002). https://doi.org/10.1006/jcat.2002.3545
  6. Q. Zhang, H. Wang, P. Ning, Z. Song, and Y. Duan, In situ DRIFTS studies on $CuO-Fe_2O_3$ catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen, Appl. Surf. Sci., 419, 733-743 (2017) https://doi.org/10.1016/j.apsusc.2017.05.056
  7. C. M. Hung, Synthesis, characterization and performance of $CuO/La_2O3$ composite catalyst for ammonia catalytic oxidation, Powder Technol., 196, 56-61 (2009). https://doi.org/10.1016/j.powtec.2009.07.001
  8. S. M. Lee, H. H. Lee, and S. C. Hong, Influence of calcination temperature on $Ce/TiO_2$ catalysis of selective catalytic oxidation of $NH_3$ to $N_2$, Appl. Catal. B: Environ., 470, 189-198 (2014). https://doi.org/10.1016/j.apcata.2013.10.057
  9. J. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxide, Appl. Catal. B: Environ., 13, 45-58 (1997). https://doi.org/10.1016/S0926-3373(96)00092-6
  10. G. Olofsson, A. Hinz, and A. Andersson, A transient response study of the selective catalytic oxidation of ammonia to nitrogen on $Pt/CuO/Al_2O_3$, Chem. Eng. Sci., 59, 4113-4123 (2004). https://doi.org/10.1016/j.ces.2004.03.047
  11. L. Zhang and H. He, Mechanism of selective catalytic oxidation of ammonia to nitrogen over $Ag/Al_2O_3$, J. Catal., 268, 18-25 (2009). https://doi.org/10.1016/j.jcat.2009.08.011
  12. X. Cui, L. Chen, Y. Wang, H. Chen, W. Zhao, Y. Li, and J. Shi, Fabrication of hierarchically porous $RuO_2-CuO/Al-ZrO_2$ composite as highly efficient catalyst for ammonia-selective catalytic oxidation, ACS Catal., 4, 2195-2206 (2014). https://doi.org/10.1021/cs500421x
  13. G. J. Kim, D. W. Kwon, J. H. Shin, K. W. Kim, and S. C. Hong, Influence of the addition of vanadium to Pt/$TiO_2$ catalyst on the selective catalytic oxidation of $NH_3$ to $N_2$, Environ. Tech., 40, 2588-2600 (2019). https://doi.org/10.1080/09593330.2018.1554004
  14. J. P. Ramirez, N. Lopez, and E. V. Kondratenko, Pressure and materials effect on the selectivity of $RuO_2$ in $NH_3$ oxidation, J. Phys. Chem. C, 114, 16660-16668 (2010). https://doi.org/10.1021/jp106193w
  15. G. J. Kim, D. W. Kwon, and S. C. Hong, Effect of Pt particle size and valence state on the performance of Pt/$TiO_2$ catalysts for CO oxidation at room temperature, J. Chem. Eng. Jap., 120, 17996-18004 (2016).
  16. L. Gang, B. G. Anderson, J. van Grondelle, and R. A. van Santen, Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts, Appl. Catal. B: Environ., 40, 101-110 (2003). https://doi.org/10.1016/S0926-3373(02)00129-7
  17. J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang, and T. Zhang, Influence of pretreatment temperature on catalytic performance of rutile $TiO_2$-supported ruthenium catalyst in $CO_2$ methanation, J. Catal., 333, 227-237 (2016). https://doi.org/10.1016/j.jcat.2015.10.025
  18. C. L. Wang, W. S. Hwangm, H. L. Chu, H. J. Lin, H. H. Ko, and M. C. Wang, Kinetics of anatase transition to rutile $TiO_2$ from titanium dioxide precursor powders synthesized by a sol-gel process, Ceram. INT., 42, 13136-13143 (2016). https://doi.org/10.1016/j.ceramint.2016.05.101
  19. N. Aranda-Perez, M. P. Ruiz, J. Echave, and J. Faria, Enhanced activity and stability of $Ru-TiO_2$ rutile for liquid phase ketonization, Appl. Catal. A: Gen., 531, 106-118 (2017). https://doi.org/10.1016/j.apcata.2016.10.025
  20. J. M. G. Carballo, E. Finocchio, S. Garcia, S. Rojas, M. Ojeda, G. Busca, and J. L. G. Fierro, Support effects on the structure and performance of ruthenium catalysts for the Fischer-Tropsch synthesis, Catal. Sci. Technol., 1, 1013-1023 (2011). https://doi.org/10.1039/c1cy00136a
  21. V. P. Londhe, V. S. Kamble, and N. M. Gupta, Effect of hydrogen reduction on the CO adsorption and methanation reaction over $Ru/TiO_2$ and $Ru/Al_2O_3$ catalysts, J. Mol. Catal. A: Chem., 121, 33-44 (1997). https://doi.org/10.1016/S1381-1169(96)00449-9
  22. X. Cui, L. Chen, Y. Wang, H. Chen, W. Zhao, Y. Li, and J. Shi, Fabrication of hierarchically porous $RuO_2-CuO/Al-ZrO_2$ composite as highly efficient catalyst for ammonia-selective catalytic oxidation, ACS Catal., 4, 2195-2206 (2014). https://doi.org/10.1021/cs500421x
  23. J. Ftouni, A. Munoz-Murillo, A. Goryachev, J. P. Hofmann, E. J. M. Hensen, L. Lu, C. J. Kiely, P. C. A. Bruijinincx, and B. M. Weckhuysen, $ZrO_2$ is preferred over $TiO_2$ as support for the Ru-catalyzed hydrogenation of levulinic acid to ${\gamma}$-valerolacone, ACS Catal., 6, 5462-5472 (2016). https://doi.org/10.1021/acscatal.6b00730
  24. D. B. Ruan, P. T. Liu, Y. C. Chiu, K. Z. Kan, M. C. Yu, T. C. Chien, Y. H. Chen, P. Y. Kuo, and S. M. Sze, Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition, Thin Solid Films, 660, 885-890 (2018). https://doi.org/10.1016/j.tsf.2018.02.036
  25. L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts, Appl. catal. B: Environ., 88, 224-231 (2009). https://doi.org/10.1016/j.apcatb.2008.09.032
  26. S. S. Kim, H. H. Lee, S. C. Hong, The effect of the morphological characteristics of $TiO_2$ supports on the reverse water-gas shift reaction over Pt/$TiO_2$ catalysts, Appl. Catal. B: Environ., 119-120, 100-108 (2012). https://doi.org/10.1016/j.apcatb.2012.02.023