DOI QR코드

DOI QR Code

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries

리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석

  • Park, Seohyeon (Department of Graphic Arts Information Engineering, Pukyong National University) ;
  • Oh, Pilgun (Department of Graphic Arts Information Engineering, Pukyong National University)
  • 박서현 (부경대학교 인쇄정보공학과) ;
  • 오필건 (부경대학교 인쇄정보공학과)
  • Received : 2019.11.29
  • Accepted : 2020.01.14
  • Published : 2020.02.10

Abstract

Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

최근 리튬이차전지 양극 소재의 다양한 열화 메커니즘들이 밝혀지면서 이것을 제어하여 새로운 전기화학적 특성을 구현하고 기존 소재의 한계점을 극복하고자 하는 연구결과들이 많이 보고되고 있다. 특히, 리튬과잉산화물은 250 mA h g-1 이상의 고 용량 차세대 리튬이차전지 양극 물질로 주목받고 있으나, 충방전 과정 중에 소재 특유의 원자 구조 열화로 인해 활용이 제한되고 있다. 본 연구는 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 리튬과잉소재의 충방전 과정 중에서 겪는 원자 구조 변화 과정을 분석하여 소재의 열화 과정을 밝히고 이를 개선하기 위한 연구 방향을 제시하고자 한다. 이를 위해, 원자 단위의 분해능을 갖는 전자투과현미경을 활용하여 충방전 중 원자 구조의 변화 과정을 분석하고 이러한 구조 변화가 소재의 전기화학적 특성에 어떠한 영향을 미치는지 밝히고자 하였다. 충전 과정 중에 발생한 다량의 리튬 빈자리로 인해 구조 불안정성이 일어났고, 이로 인해 전이 금속이 리튬 빈 자리로 이동하면서 구조 열화가 확인되었다. 결과적으로 이러한 구조 변이는 리튬과잉소재의 가장 큰 문제점인 방전 전압 강하 특성을 야기한다는 것을 알아내었다.

Keywords

References

  1. H. J. Yu and H. S. Zhou, High-energy cathode materials ($Li_2MnO_3-LiMO_2$) for lithium-ion batteries, J. Phys. Chem. Lett., 4, 1268-1280 (2013). https://doi.org/10.1021/jz400032v
  2. J. Seo, H. Choi, J. Ahn, J. Kim, and J. Bae, Electrochemical properties of hydroquinone derivatives and their application to positive active materials in Li-secondary battery, J. Korean Ind. Eng. Chem., 13, 782-786 (2002).
  3. B. Kim, Y. Lim, and C. Lee, Quantitative analysis of patents concerning cathode active materials for lithium-ion secondary batteries based on layer structure, Appl. Chem. Eng., 26, 287-293 (2015). https://doi.org/10.14478/ace.2015.1026
  4. W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54, 4440-4457 (2015). https://doi.org/10.1002/anie.201409262
  5. J. M. Zheng, M. Gu, J. Xiao, P. J. Zuo, C. M. Wang, and J. G. Zhang, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett., 13, 3824-3830 (2013). https://doi.org/10.1021/nl401849t
  6. H. J. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. S. Zhou, and Y. Ikuhara, Direct Atomic-resolution observation of two phases in the $Li_{1.2}Mn_{0.567}Ni_{0.166}Co_{0.067}O_2$ cathode material for lithium-ion batteries, Angew. Chem. Int. Ed., 125, 6085-6089 (2013). https://doi.org/10.1002/ange.201301236
  7. F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. L. Xin, and M. M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Commun., 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
  8. M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo, and J. M. Tarascon, Origin of voltage decay in high-capacity layered oxide electrodes, Nat. Mater., 14, 230-238 (2015). https://doi.org/10.1038/nmat4137
  9. P. Oh, S. Myeong, W. Cho, M. J. Lee, M. Ko, H. Y. Jeong, and J. Cho, Superior long-term energy retention and volumetric energy density for Li-rich cathode materials, Nano Lett., 14, 5965-5972 (2014). https://doi.org/10.1021/nl502980k
  10. P. Oh, M. Ko, S. Myeong, Y. Kim, and J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high-performance $0.4Li_2MnO_3$_$0.6LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials, Adv. Energy Mater., 4, 1400631 (2014). https://doi.org/10.1002/aenm.201400631
  11. J. Zheng, M. Gu, A. Genc, J. Xiao, P. Xu, X. Chen, Z. Zhu, W. Zhao, L. Pullan, C. Wang, and J. G. Zhang, Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution, Nano Lett., 14, 2628-2635 (2014). https://doi.org/10.1021/nl500486y
  12. R. Wang, X. Q. He, L. H. He, F. W. Wang, R. J. Xiao, L. Gu, H. Li, and L. Q. Chen, Atomic structure of $Li_2MnO_3$ after partial delithiation and re-lithiation, Adv. Energy Mater., 3, 1358-1367 (2013). https://doi.org/10.1002/aenm.201200842
  13. K. T. Lee, S. Jeong, and J. Cho, Roles of surface chemistry on safety and electrochemistry in lithium ion batteries, Acc. Chem. Res., 46, 1161-1170 (2013). https://doi.org/10.1021/ar200224h
  14. A. Boulineau, L. Simonin, J. F. Colin, C. Bourbon, and S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett., 13, 3857-3863 (2013). https://doi.org/10.1021/nl4019275
  15. M. Ko, P. Oh, S. Chae, W. Cho, and J. Cho, Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications, Small, 11, 4058-4073 (2015). https://doi.org/10.1002/smll.201500474
  16. W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho, and J. Cho, Countering voltage decay and capacity fading of lithium-rich cathode material at $60^{\circ}C$ by hybrid surface protection layers, Adv. Energy Mater., 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274
  17. F. Wu, N. Li, Y. Su, H. Shou, L. Bao, W. Yang, L. Zhang, R. An, and S. Chen, Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries, Adv. Mater., 25, 3722-3726 (2013). https://doi.org/10.1002/adma.201300598
  18. D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D. L. Wood, and C. Daniel, Structural transformation of a lithium-rich $Li_{1.2}Co_{0.1}Mn_{0.55}Ni_{0.15}O_2$ cathode during high voltage cycling resolved by in situ X-ray diffraction, J. Power Sources, 229, 239-248 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.144
  19. M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. Baer, J. G. Zhang, N. Browning, J. Liu, and C. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries, ACS Nano, 7, 760-767 (2013). https://doi.org/10.1021/nn305065u