References
-
H. J. Yu and H. S. Zhou, High-energy cathode materials (
$Li_2MnO_3-LiMO_2$ ) for lithium-ion batteries, J. Phys. Chem. Lett., 4, 1268-1280 (2013). https://doi.org/10.1021/jz400032v - J. Seo, H. Choi, J. Ahn, J. Kim, and J. Bae, Electrochemical properties of hydroquinone derivatives and their application to positive active materials in Li-secondary battery, J. Korean Ind. Eng. Chem., 13, 782-786 (2002).
- B. Kim, Y. Lim, and C. Lee, Quantitative analysis of patents concerning cathode active materials for lithium-ion secondary batteries based on layer structure, Appl. Chem. Eng., 26, 287-293 (2015). https://doi.org/10.14478/ace.2015.1026
- W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54, 4440-4457 (2015). https://doi.org/10.1002/anie.201409262
- J. M. Zheng, M. Gu, J. Xiao, P. J. Zuo, C. M. Wang, and J. G. Zhang, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett., 13, 3824-3830 (2013). https://doi.org/10.1021/nl401849t
-
H. J. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. S. Zhou, and Y. Ikuhara, Direct Atomic-resolution observation of two phases in the
$Li_{1.2}Mn_{0.567}Ni_{0.166}Co_{0.067}O_2$ cathode material for lithium-ion batteries, Angew. Chem. Int. Ed., 125, 6085-6089 (2013). https://doi.org/10.1002/ange.201301236 - F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. L. Xin, and M. M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Commun., 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
- M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo, and J. M. Tarascon, Origin of voltage decay in high-capacity layered oxide electrodes, Nat. Mater., 14, 230-238 (2015). https://doi.org/10.1038/nmat4137
- P. Oh, S. Myeong, W. Cho, M. J. Lee, M. Ko, H. Y. Jeong, and J. Cho, Superior long-term energy retention and volumetric energy density for Li-rich cathode materials, Nano Lett., 14, 5965-5972 (2014). https://doi.org/10.1021/nl502980k
-
P. Oh, M. Ko, S. Myeong, Y. Kim, and J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high-performance
$0.4Li_2MnO_3$ _$0.6LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials, Adv. Energy Mater., 4, 1400631 (2014). https://doi.org/10.1002/aenm.201400631 - J. Zheng, M. Gu, A. Genc, J. Xiao, P. Xu, X. Chen, Z. Zhu, W. Zhao, L. Pullan, C. Wang, and J. G. Zhang, Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution, Nano Lett., 14, 2628-2635 (2014). https://doi.org/10.1021/nl500486y
-
R. Wang, X. Q. He, L. H. He, F. W. Wang, R. J. Xiao, L. Gu, H. Li, and L. Q. Chen, Atomic structure of
$Li_2MnO_3$ after partial delithiation and re-lithiation, Adv. Energy Mater., 3, 1358-1367 (2013). https://doi.org/10.1002/aenm.201200842 - K. T. Lee, S. Jeong, and J. Cho, Roles of surface chemistry on safety and electrochemistry in lithium ion batteries, Acc. Chem. Res., 46, 1161-1170 (2013). https://doi.org/10.1021/ar200224h
- A. Boulineau, L. Simonin, J. F. Colin, C. Bourbon, and S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett., 13, 3857-3863 (2013). https://doi.org/10.1021/nl4019275
- M. Ko, P. Oh, S. Chae, W. Cho, and J. Cho, Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications, Small, 11, 4058-4073 (2015). https://doi.org/10.1002/smll.201500474
-
W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho, and J. Cho, Countering voltage decay and capacity fading of lithium-rich cathode material at
$60^{\circ}C$ by hybrid surface protection layers, Adv. Energy Mater., 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274 - F. Wu, N. Li, Y. Su, H. Shou, L. Bao, W. Yang, L. Zhang, R. An, and S. Chen, Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries, Adv. Mater., 25, 3722-3726 (2013). https://doi.org/10.1002/adma.201300598
-
D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D. L. Wood, and C. Daniel, Structural transformation of a lithium-rich
$Li_{1.2}Co_{0.1}Mn_{0.55}Ni_{0.15}O_2$ cathode during high voltage cycling resolved by in situ X-ray diffraction, J. Power Sources, 229, 239-248 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.144 - M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. Baer, J. G. Zhang, N. Browning, J. Liu, and C. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries, ACS Nano, 7, 760-767 (2013). https://doi.org/10.1021/nn305065u