DOI QR코드

DOI QR Code

석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터

Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong Jib (Department of chemical Engineering, Kongju National University)
  • 투고 : 2020.02.04
  • 심사 : 2020.02.25
  • 발행 : 2020.04.10

초록

석탄계 활성탄을 사용한 Reactive Red 120 (RR 120) 염료의 흡착특성을 활성탄의 양, pH, 초기농도, 접촉시간 및 온도를 흡착변수로 사용하여 조사하였다. 등온흡착평형관계는 Langmuir 식이 Freundlich 식보다 더 잘 맞았다. 흡착 메카니즘은 균일한 에너지 분포를 가진 단분자층 흡착이 우세하다고 판단되었다. 평가된 Langmuir 분리계수(RL = 0.181~0.644)로부터 이 흡착공정이 효과적인 처리영역(RL = 0~1)에 속하는 것을 알았다. Temkin 식과 Dubinin-Radushkevich 식에 의해 구한 흡착에너지는 각각 E = 15.31~7.12 J/mol과 B = 0.223~0.365 kJ/mol로 흡착공정은 모두 물리흡착(E < 20 J/mol, B < 8 kJ/mol)으로 나타났다. 흡착속도실험결과는 유사 1차 반응속도식에 잘 맞았다. CGAC에 대한 RR 120 염료의 흡착반응은 온도가 올라갈수록 자유에너지 변화값이 감소하였기 때문에 온도 증가와 함께 자발성이 높아지는 것으로 나타났다. 엔탈피 변화(12.747 kJ/mol)는 흡열반응임을 알려주었다. CGAC에 의한 RR 120의 흡착반응의 등량흡착열은 9.78~24.21 kJ/mol로 물리흡착(< 80 kJ/mol)임을 밝혔다.

Adsorption characteristics of reactive red 120 (RR 120) dye by a coal-based granular activated carbon (CGAC) from an aqueous solution were investigated using the amount of activated carbon, pH, initial concentration, contact time and temperature as adsorption variables. Isotherm equilibrium relationship showed that Langmuir's equation fits better than that of Freundlich's equation. The adsorption mechanism was considered to be superior to the adsorption of monolayer with uniform energy distribution. From the evaluated Langmuir separation coefficients (RL = 0.181~0.644), it was found that this adsorption process belongs to an effective treatment area (RL = 0~1). The adsorption energy determined by Temkin's equation and Dubinin-Radushkevich's equation was E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. The adsorption process showed the physical adsorption (E < 20 J/mol and B < 8 kJ/mol). The adsorption kinetics followed the pseudo first order model. The adsorption reaction of RR 120 dye on CGAC was found to increase spontaneously with increasing the temperature because the free energy change decreased with increasing the temperature. The enthalpy change (12.747 kJ/mol) indicated an endothermic reaction. The isosteric heat of adsorption (△Hx = 9.78~24.21 kJ/mol) for the adsorption reaction of RR 120 by CGAC was revealed to be the physical adsorption (△Hx < 80 kJ/mol).

키워드

참고문헌

  1. P. K. Malik and S. K. Saha, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Sep. Purif. Technol., 31, 241-250 (2003). https://doi.org/10.1016/S1383-5866(02)00200-9
  2. M. N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater, INTECH, Chapter 7, 167-194 (2013).
  3. A. A. Farghali, M. Bahgat, W. M. A. E. Rouby, and M. H. Khedr, Preparation, decoration and characterization of graphene sheets for methyl green adsorption, J. Alloys Comp., 555, 193-200 (2013). https://doi.org/10.1016/j.jallcom.2012.11.190
  4. P. Sharma, B. K. Saikia, and M. R. Das, Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherm and thermodynamic parameters, Colloids and Surf. A: Physicochem. Eng. Asp., 457, 125-133 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.054
  5. L. T. D. Reis, N. F. Robaina, W. F. Pacheco, and R. J. Cassella., Separation of malachite green and methyl green cationic dyes from aqueous medium by adsorption on amberlite XAD-2 and XAD-4 resins using sodium dodecylsulfate as carrier, Chem. Eng. J., 53, 532-540 (2011).
  6. M. Bahgat, A. A. Farghali, and W. E. Rouby, M Khedr, and M Y. Mohassab-Ahmed, Adsorption of methyl green dye onto multi- walled carbon nanotubes decorated with Ni nanoferrite, Appl. Nanosci. Mat., 191, 251-261 (2013).
  7. D. C. Lee and J. J. Lee, Equilibrium, kinetic and thermodynamics parameter studies on adsorption of acid black 1 using coconut shell-based granular activated carbon, Appl. Chem. Eng., 27, 590-598 (2016). https://doi.org/10.14478/ace.2016.1085
  8. K. Porkodi and K. Vasanth Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater., 143, 311-327 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.029
  9. A. M. M. Vargas, A. L. Cazetta, A. C. Martins, J. C. G. Moraes, E. E. Garcia, G. F. Gauze, W. F. Costa, and V. C. Almeida, Kinetic and equilibrium studies: Adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods, Chem. Eng. J., 181-182, 243-250 (2012). https://doi.org/10.1016/j.cej.2011.11.073
  10. C. Puri and G. Sumana, High efficiency adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorilonite nanotcomposite, Appl. Clay Sci., 166, 102-112 (2018). https://doi.org/10.1016/j.clay.2018.09.012
  11. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  12. J. J. Lee, Adsoption kinetics and thermodynamics of adsorption brilliant blue FCF dye onto coconut shell based acivated carbon, Korean Chem. Eng. Res., 53(3), 309-314 (2015). https://doi.org/10.9713/kcer.2015.53.3.309
  13. J. J. Lee, Study on isotherm, kinetics and thermodynamics parameters for adsorption of methyl green using acivated carbon, Appl. Chem. Eng., 30(2), 190-197 (2019). https://doi.org/10.14478/ACE.2019.1001
  14. M. Jain, V. Garg, and K. Kadirvelu. Chromium (VI) removal from aqueous solution, using sunflower stem waste, J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  15. J. J. Lee, Isotherm, kinetic and thermodynamic parameters sudies of new fuchsin dye adsorption on granular activated carbon, Appl. Chem. Eng., 25(6), 632-638 (2014). https://doi.org/10.14478/ace.2014.1120
  16. E. H. Lee, K. Y. Lee, K. W. Kim, H. J. Kim, I. S. Kim, D. Y. Chung, J. K. Moon, and J. W. Choi, Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223-234 (2016). https://doi.org/10.7733/jnfcwt.2016.14.3.223
  17. M. Pan, X. Lin, J. Vie, and X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, Royal Soc. Chem., 7, 4492-4500 (2017).
  18. P. Sivakumar and P. N. Palanisamy, Adsorption studies of basic red 29 by a non conventional activated carbon prepared from Euphorbia Antiquorum L, Int. J. Chem. Tech. Res., 1(3), 502-510 (2009).
  19. W. S. W. Ngah and M. A. K. M. Hanafiah, Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies, Biochem. Eng. J., 39, 521-530 (2008). https://doi.org/10.1016/j.bej.2007.11.006
  20. S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047
  21. S. Kaur, S. Rani, R. K. Mahajan, M. Asif, and V. K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019