참고문헌
- Bioplastics facts and figures; https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf, Accessed Feb. 19, 2020.
- S. Ebnesajjad, Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 1st ed., William Andrew, Oxford, UK (2013).
- J. Lee and C. Pai, Trends of environment-friendly bioplastics, Appl. Chem. Eng., 27, 245-251 (2016). https://doi.org/10.14478/ace.2016.1034
- Editorial, The future of plastic, Nat. Commun., 9, 2157 (2018). https://doi.org/10.1038/s41467-018-04565-2
- X. Feng, A. J. East, W. Hammond, and M. Jaffe, Sugar-based chemicals for environmentally sustainable applications. In: L. Korugic-Karasz (ed.). Contemporary Science of Polymeric Materials, 3-27, American Chemical Society, Washington DC, USA (2010).
- M. Irshad, S. Lee, E. Choi, and J. W. Kim, Efficient synthetic routes of biomass-derived platform chemicals, Appl. Chem. Eng., 30, 280-289 (2019). https://doi.org/10.14478/ace.2019.1036
- Roquette launches 'world's largest' isosorbide production unit, Additives for Polymers, 2015, 8-9 (2015).
- F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Prog. Polym. Sci., 35, 578-622 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
- M. Sajid, X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes, Green Chem., 20, 5427-5453 (2018). https://doi.org/10.1039/C8GC02680G
- H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules, 10, 162-165 (2009). https://doi.org/10.1021/bm801065u
- T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose nano-fibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules, 8, 2485-2491 (2007). https://doi.org/10.1021/bm0703970
- M. K. Thakur, V. K. Thakur, and R. Prasanth, Nanocellulose-Based Polymer Nanocomposites: An Introduction. In: V. K. Thakur (ed.). Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, Scrivener, Beverly, MA, USA (2014).
- K. Oksman, Y. Aitomaki, A. P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, and S. Hooshmand, Review of the recent developments in cellulose nanocomposite processing, Compos. Part A: Appl. Sci. Manuf., 83, 2-18 (2016). https://doi.org/10.1016/j.compositesa.2015.10.041
- A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, Commercial application of cellulose nano-composites - A review, Biotechnol. Rep., 21, e00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316
- R. Auras, L.-T. Lim, S. E. M. Selke, and H. Tsuji, Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, 1st ed., John Wiley & Sons, Hoboken, New Jersey, USA (2011).
- M. H. Ryu, J. Park, D. X. Oh, S. Y. Hwang, H. Jeon, S. S. Im, and J. Jegal, Precisely controlled two-step synthesis of cellulose-graft-poly(l-lactide) copolymers: Effects of graft chain length on thermal behavior, Polym. Degrad. Stabil., 142, 226-233 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.07.008
- L. Dammer, M. Carus, A. Raschka, and L. Scholz, Market Developments of and Opportunities for Biobased Products and Chemicals, nova-institute for Ecology and Innovation, Hurth, Germany (2013).
- Kaneka enhances its biodegradable plastic manufacturing capacity; https://www.kaneka.co.jp/en/service/news/nr20180824/, Accessed Feb. 19, 2020.
- G.-Q. Chen, A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry, Chem. Soc. Rev., 38, 2434-2446 (2009). https://doi.org/10.1039/b812677c
- J. Jian, Z. Xiangbin, and H. Xianbo, An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate) - PBAT, Adv. Ind. Eng. Polym. Res., 3, 19-26 (2020). https://doi.org/10.1016/j.aiepr.2020.01.001
- H. Bai, S. Deng, D. Bai, Q. Zhang, and Q. Fu, Recent advances in processing of stereocomplex-type polylactide, Macromol. Rapid Commun., 38, 1700454 (2017). https://doi.org/10.1002/marc.201700454
- K. Masutani, K. Kobayashi, Y. Kimura, and C. W. Lee, Properties of stereo multi-block polylactides obtained by chain-extension of stereo tri-block polylactides consisting of poly(L-lactide) and poly(D-lactide), J. Polym. Res., 25, 74 (2018). https://doi.org/10.1007/s10965-018-1444-3
- S.-J. Gu, D.-S. Yoo, and M.-S. Bang, Synthesis and properties of cholesteric liquid crystalline polymers with isosorbide group, Appl. Chem. Eng., 28, 230-236 (2017). https://doi.org/10.14478/ace.2017.1005
-
New Bio-based Engineering Plastic
$DURABIO^{TM}$ ; https://www.m-chemical.co.jp/en/products/departments/mcc/sustainable/product/1201026_7964.html, Accessed Feb 19, 2020. - E. de Jong, M. A. Dam, L. Sipos, and G. J. M. Gruter, Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters. In: P. B. Smith and R. A. Gross (eds.). Biobased Monomers, Polymers, and Materials, 1-13, American Chemical Society, Washington DC, USA (2012).
- S. K. Burgess, O. Karvan, J. R. Johnson, R. M. Kriegel, and W. J. Koros, Oxygen sorption and transport in amorphous poly(ethylene furanoate), Polymer, 55, 4748-4756 (2014). https://doi.org/10.1016/j.polymer.2014.07.041
- H. T. H. Nguyen, P. Qi, M. Rostagno, A. Feteha, and S. A. Miller, The quest for high glass transition temperature bioplastics, J. Mater. Chem. A, 6, 9298-9331 (2018). https://doi.org/10.1039/C8TA00377G
- PEF - the polymer for the future; https://www.avantium.com/wp-content/uploads/2019/11/Article-PEF-Planet-Insider-issue-09-2019-page-40.pdf, Accessed Feb 19, 2020.
- N. Poulopoulou, N. Kasmi, D. N. Bikiaris, D. G. Papageorgiou, G. Floudas, and G. Z. Papageorgiou, Sustainable polymers from renewable resources: Polymer blends of furan-based polyesters, Macromol. Mater. Eng., 303, 1800153 (2018). https://doi.org/10.1002/mame.201800153
- L. Alaerts, M. Augustinus, and K. Van Acker, Impact of bio-based plastics on current recycling of plastics, Sustainability, 10, 1487 (2018). https://doi.org/10.3390/su10051487
- H. T. Kim, J. K. Kim, H. G. Cha, M. J. Kang, H. S. Lee, T. U. Khang, E. J. Yun, D.-H. Lee, B. K. Song, S. J. Park, J. C. Joo, and K. H. Kim, Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET, ACS Sustain. Chem. Eng., 7, 19396-19406 (2019). https://doi.org/10.1021/acssuschemeng.9b03908
- J. Pang, M. Zheng, R. Sun, A. Wang, X. Wang, and T. Zhang, Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET, Green Chem., 18, 342-359 (2016). https://doi.org/10.1039/C5GC01771H
- T. Kim, J. M. Koo, M. H. Ryu, H. Jeon, S.-M. Kim, S.-A. Park, D. X. Oh, J. Park, and S. Y. Hwang, Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide, Polymer, 132, 122-132 (2017). https://doi.org/10.1016/j.polymer.2017.10.052
- S. Chatti, G. Schwarz, and H. R. Kricheldorf, Cyclic and noncyclic polycarbonates of isosorbide (1,4:3,6-dianhydro-d-glucitol), Macromolecules, 39, 9064-9070 (2006). https://doi.org/10.1021/ma0606051
- J. H. Yoon, S.-M. Kim, Y. Eom, J. M. Koo, H.-W. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H.-J. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
- J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
- S.-A. Park, J. Choi, S. Ju, J. Jegal, K. M. Lee, S. Y. Hwang, D. X. Oh, and J. Park, Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates, Polymer, 116, 153-159 (2017). https://doi.org/10.1016/j.polymer.2017.03.077
- S. Kind, S. Neubauer, J. Becker, M. Yamamoto, M. Volkert, G. v. Abendroth, O. Zelder, and C. Wittmann, From zero to hero - Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum, Metab. Eng., 25, 113-123 (2014). https://doi.org/10.1016/j.ymben.2014.05.007
-
H. Y. Kim, M. H. Ryu, D. S. Kim, B. K. Song, and J. Jegal, Preparation and characterization of nylon 6-morpholinone random copolymers based on
${\varepsilon}$ -caprolactam and morpholinone, Polym-Korea, 38, 714-719 (2014). https://doi.org/10.7317/pk.2014.38.6.714 - H. T. Kim, K.-A. Baritugo, Y. H. Oh, S. M. Hyun, T. U. Khang, K. H. Kang, S. H. Jung, B. K. Song, K. Park, I.-K. Kim, M. O. Lee, Y. Kam, Y. T. Hwang, S. J. Park, and J. C. Joo, Metabolic engineering of corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510, ACS Sustain. Chem. Eng., 6, 5296-5305 (2018). https://doi.org/10.1021/acssuschemeng.8b00009
- Arkema and bio-based products; https://www.arkema.com/en/arkema-group/innovation/bio-based-products/, Accessed Feb 19, 2020.
- K. Luo, Y. Wang, J. Yu, J. Zhu, and Z. Hu, Semi-bio-based aromatic polyamides from 2,5-furandicarboxylic acid: Toward high-performance polymers from renewable resources, RSC Adv., 6, 87013-87020 (2016). https://doi.org/10.1039/C6RA15797A
- X. Ji, Z. Wang, J. Yan, and Z. Wang, Partially bio-based polyimides from isohexide-derived diamines, Polymer, 74, 38-45 (2015). https://doi.org/10.1016/j.polymer.2015.07.051
- L. Jasinska, M. Villani, J. Wu, D. van Es, E. Klop, S. Rastogi, and C. E. Koning, Novel, fully biobased semicrystalline polyamides, Macromolecules, 44, 3458-3466 (2011). https://doi.org/10.1021/ma200256v
- J. W. Labadie, J. L. Hedrick, and M. Ueda, Poly(aryl ether) Synthesis. In: J. L. Hedrick and J. W. Labadie (eds.). Step-Growth Polymers for High-Performance Materials, American Chemical Society, Washington DC, USA (1996).
- J. Park, M. Seo, H. Choi, and S. Y. Kim, Synthesis and physical gelation induced by self-assembly of well-defined poly(arylene ether sulfone)s with various numbers of arms, Polym. Chem., 2, 1174-1179 (2011). https://doi.org/10.1039/c0py00418a
- M. G. Dhara and S. Banerjee, Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups, Prog. Polym. Sci., 35, 1022-1077 (2010). https://doi.org/10.1016/j.progpolymsci.2010.04.003
- J. Park, J. Kim, M. Seo, J. Lee, and S. Y. Kim, Dual-mode fluorescence switching induced by self-assembly of well-defined poly(arylene ether sulfone)s containing pyrene and amide moieties, Chem. Commun., 48, 10556-10558 (2012). https://doi.org/10.1039/c2cc35804b
- H. B. Abderrazak, A. Fildier, H. B. Romdhane, S. Chatti, and H. R. Kricheldorf, Synthesis of new poly(ether ketone)s derived from biobased diols, Macromol. Chem. Phys., 214, 1423-1433 (2013). https://doi.org/10.1002/macp.201300015
- S. Chatti, M. A. Hani, K. Bornhorst, and H. R. Kricheldorf, Poly(ether sulfone) of isosorbide, isomannide and isoidide, High Perform. Polym., 21, 105-118 (2009). https://doi.org/10.1177/0954008308088296
- S.-A. Park, H. Jeon, H. Kim, S.-H. Shin, S. Choy, D. S. Hwang, J. M. Koo, J. Jegal, S. Y. Hwang, J. Park, and D. X. Oh, Sustainable and recyclable super engineering thermoplastic from biorenewable monomer, Nat. Commun., 10, 2601 (2019). https://doi.org/10.1038/s41467-019-10582-6
- S.-A. Park, C. Im, D. X. Oh, S. Y. Hwang, J. Jegal, J. H. Kim, Y.-W. Chang, H. Jeon, and J. Park, Study on the synthetic characteristics of biomass-derived isosorbide-based poly(arylene ether ketone)s for sustainable super engineering plastic, Molecules, 24, 2492 (2019). https://doi.org/10.3390/molecules24132492
- J. Njuguna, K. Pielichowski, and S. Desai, Nanofiller-reinforced polymer nanocomposites, Polym. Advan. Technol., 19, 947-959 (2008). https://doi.org/10.1002/pat.1074
- S. Y. Hwang, E. S. Yoo, and S. S. Im, The synthesis of copolymers, blends and composites based on poly(butylene succinate), Polym. J., 44, 1179-1190 (2012). https://doi.org/10.1038/pj.2012.157
- J. M. Koo, H. Kim, M. Lee, S.-A. Park, H. Jeon, S.-H. Shin, S.-M. Kim, H. G. Cha, J. Jegal, B.-S. Kim, B. G. Choi, S. Y. Hwang, D. X. Oh, and J. Park, Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability, Macromolecules, 52, 923-934 (2019). https://doi.org/10.1021/acs.macromol.8b02391
- A. Dasari, Z. Z. Yu, and Y.-W. Mai, Polymer Nanocomposites: Towards Multi-Functionality, 1st ed., Springer, London, UK (2016).
- D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, 49, 3187-3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017
- F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., 40, 1511-1575 (2006). https://doi.org/10.1177/0021998306067321
- P. Sripaiboonkij, N. Sripaiboonkij, W. Phanprasit, and M. S. Jaakkola, Respiratory and skin health among glass microfiber production workers: A cross-sectional study, Environ. Health, 8, 36 (2009). https://doi.org/10.1186/1476-069X-8-36
- L. Zhong and X. Peng, Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites. In: V. K. Thakur, M. K. Thakur and M. R. Kessler (eds.). Handbook of Composites from Renewable Materials, John Wiley & Sons, Hoboken, New Jersey, USA (2017).
- Z. Hanif, H. Jeon, T. H. Tran, J. Jegal, S.-A. Park, S.-M. Kim, J. Park, S. Y. Hwang, and D. X. Oh, Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion, J. Polym. Res., 25, 191 (2017).
- T. Kim, T. H. Tran, S. Y. Hwang, J. Park, D. X. Oh, and B.-S. Kim, Crab-on-a-Tree: All biorenewable, optical and radio frequency transparent barrier nanocoating for food packaging, ACS Nano, 13, 3796-3805 (2019). https://doi.org/10.1021/acsnano.8b08522
- H.-L. Nguyen, Z. Hanif, S.-A. Park, B. G. Choi, T. H. Tran, D. S. Hwang, J. Park, S. Y. Hwang, and D. X. Oh, Sustainable boron nitride nanosheet-reinforced cellulose nanofiber composite film with oxygen barrier without the cost of color and cytotoxicity, Polymers, 10, 501 (2018). https://doi.org/10.3390/polym10050501
- H.-L. Nguyen, S. Ju, L. T. Hao, T. H. Tran, H. G. Cha, Y. J. Cha, J. Park, S. Y. Hwang, D. K. Yoon, D. S. Hwang, and D. X. Oh, The renewable and sustainable conversion of chitin into a chiral nitrogen-doped carbon-sheath nanofiber for enantioselective adsorption, ChemSusChem, 12, 3236-3242 (2019). https://doi.org/10.1002/cssc.201901176
- T. H. Tran, H.-L. Nguyen, D. S. Hwang, J. Y. Lee, H. G. Cha, J. M. Koo, S. Y. Hwang, J. Park, and D. X. Oh, Five different chitin nanomaterials from identical source with different advantageous functions and performances, Carbohydr. Polym., 205, 392-400 (2019). https://doi.org/10.1016/j.carbpol.2018.10.089
- H. S. Yu, H. Park, T. H. Tran, S. Y. Hwang, K. Na, E. S. Lee, K. T. Oh, D. X. Oh, and J. Park, Poisonous caterpillar-inspired chitosan nanofiber enabling dual photothermal and photodynamic tumor ablation, Pharmaceutics, 11, 258 (2019). https://doi.org/10.3390/pharmaceutics11060258
- T. H. Tran, H.-L. Nguyen, L. T. Hao, H. Kong, J. M. Park, S.-H. Jung, H. G. Cha, J. Y. Lee, H. Kim, S. Y. Hwang, J. Park, and D. X. Oh, A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes, Int. J. Biol. Macromol., 125, 660-667 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.086
- A. Arias, M.-C. Heuzey, M. A. Huneault, G. Ausias, and A. Bendahou, Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites, Cellulose, 22, 483-498 (2015). https://doi.org/10.1007/s10570-014-0476-z
- N. Lin, Y. Chen, F. Hu, and J. Huang, Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process, Cellulose, 22, 2629-2639 (2015). https://doi.org/10.1007/s10570-015-0684-1
- A. Nicharat, J. Sapkota, C. Weder, and E. J. Foster, Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites, J. Appl. Polym. Sci., 132, 42752 (2015).
- T. Kim, H. Jeon, J. Jegal, J. H. Kim, H. Yang, J. Park, D. X. Oh, and S. Y. Hwang, Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly(butylene succinate) nanocomposites, RSC Adv., 8, 15389-15398 (2018). https://doi.org/10.1039/C8RA01868E
- J. M. Koo, J. Kang, S.-H. Shin, J. Jegal, H. G. Cha, S. Choy, M. Hakkarainen, J. Park, D. X. Oh, and S. Y. Hwang, Biobased thermoplastic elastomer with seamless 3D-printability and superior mechanical properties empowered by in-situ polymerization in the presence of nanocellulose, Compos. Sci. Technol., 185, 107885 (2020). https://doi.org/10.1016/j.compscitech.2019.107885
- S.-A. Park, Y. Eom, H. Jeon, J. M. Koo, E. S. Lee, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals, Green Chem., 21, 5212-5221 (2019). https://doi.org/10.1039/C9GC02253H
- L. T. Hao, Y. Eom, T. H. Tran, J. M. Koo, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, Rediscovery of nylon upgraded by interactive biorenewable nano-fillers, Nanoscale, 12, 2393-2405 (2020). https://doi.org/10.1039/C9NR08091K