DOI QR코드

DOI QR Code

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Karimiasl, Mahsa (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Vinyas, M. (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Toghroli, Ali (Institute of Research and Development, Duy Tan University)
  • Received : 2019.03.24
  • Accepted : 2019.12.17
  • Published : 2020.01.25

Abstract

This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

Keywords

References

  1. Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058
  2. Alzahrani, E.O., Zenkour, A.M. and Sobhy, M. (2013), "Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium", Compos. Struct., 105, 163-172. https://doi.org/10.1016/j.compstruct.2013.04.045
  3. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermomechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212. https://doi.org/10.1016/j.compstruct.2016.01.056
  4. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M. M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/IJPS11.1585
  5. Ebrahimi, F. and Barati, M.R. (2016a), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
  6. Ebrahimi, F. and Barati, M.R. (2016b), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406216668912. https://doi.org/10.1177/0954406216668912
  7. Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
  8. Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  9. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  10. Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  11. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  12. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  13. Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
  14. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0
  15. Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B: Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008
  16. Heidari, R.M., Alimirzaei, S. and Torabi, K. (2015), "Analytical solution for free vibration of functionally graded carbon nanotubes (FG-CNT) reinforced double-layered nano-plates resting on elastic medium".
  17. Henderson, J.P., Plummer, A. and Johnston, N. (2018), "An electro-hydrostatic actuator for hybrid active-passive vibration isolation", Int. J. Hydromechatron., 1(1), 47-71. https://doi.org/10.1504/IJHM.2018.090305
  18. Hosseini, M. and Jamalpoor, A. (2015), "Analytical solution for thermomechanical vibration of double-viscoelastic nanoplatesystems made of functionally graded materials", J. Thermal Stress., 38(12), 1428-1456. https://doi.org/10.1080/01495739.2015.1073986
  19. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with prebent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. http://dx.doi.org/10.5897/IJPS11.1324
  20. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)." http://dx.doi.org/10.12989/eas.2017.13.6.531
  21. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N. H. (2015), "Behavior of Tilted Angle Shear Connectors", PLoS One, 10(12), e0144288. http://dx.doi.org/10.1371/journal.pone.0144288
  22. Lee, C.Y. and Kim, J.H. (2013), "Hygrothermal postbuckling behavior of functionally graded plates", Compos. Struct., 95, 278-282. https://doi.org/10.1016/j.compstruct.2012.07.010
  23. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  24. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., Int. J., 23(2), 207-214. http://dx.doi.org/10.12989/sss.2019.23.2.207
  25. Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004
  26. Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Mathe. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7
  27. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., Int. J., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271
  28. Mansouri, M.H. and Shariyat, M. (2015), "Biaxial thermomechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations", Compos. Part B: Eng., 83, 88-104. https://doi.org/10.1016/j.compositesb.2015.08.030
  29. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intel. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  30. Mahmoud, S.R., Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Beg, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  31. Mantari, J.L., Bonilla, E.M. and Soares, C.G. (2014), "A new tangential-exponential higher order shear deformation theory for advanced composite plates", Compos. Part B: Eng., 60, 319-328. https://doi.org/10.1016/j.compositesb.2013.12.001
  32. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A: Statist. Mech. Applicat., 53, 121169. https://doi.org/10.1016/j.physa.2019.121169
  33. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  34. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  35. Safa, M., Sari, P.A., Shariat, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A. https://doi.org/10.1016/j.physa.2019.124046
  36. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., Int. J., 22(3), 335-340. http://dx.doi.org/10.12989/sss.2018.22.3.335
  37. Shah, S., Sulong, N.R., Jumaat, M. and Shariati, M. (2016a), "State-of-the-art review on the design and performance of steel pallet rack connections", Eng. Fail. Anal., 66, 240-258. https://doi.org/10.1016/j.engfailanal.2016.04.017
  38. Shah, S., Sulong, N.R., Shariati, M., Khan, R. and Jumaat, M. (2016b), "Behavior of steel pallet rack beam-to-column connections at elevated temperatures", Thin-Wall. Struct., 106, 471-483. https://doi.org/10.1016/j.tws.2016.05.021
  39. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., Int. J., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651
  40. Shao, Z., Wakil, K., Usak, M., Amin Heidari, M., Wang, B. and Simoes, R. (2018), "Kriging Empirical Mode Decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid", Appl. Thermal Eng., 145, 58-70. https://doi.org/10.1016/j.applthermaleng.2018.09.028
  41. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012a), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604
  42. Shariati, M., Ramli Sulong, N., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. and Sinaei, H. (2012b), "Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders", Procedings of the 5th International Conference on Engineering Failure Analysis, Hilton Hotel, The Hague, The Netherlands, July.
  43. Shariati, M., Shariati, A., Sulong, N.R., Suhatril, M. and Khanouki, M.A. (2014), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134. https://doi.org/10.1016/j.engfailanal.2014.02.017
  44. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019a), "Estimation of moment and rotation of steel rack connections using extreme learning machine", Steel Compos. Struct., Int. J., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427
  45. Shariati, M., Safaei Faegh, S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Rezaee Masoom, D., Toghroli, A., Trung, N.T. and Salih, M.N. (2019b), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569
  46. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x
  47. Shi, X., Hassanzadeh-Aghdam, M.K. and Ansari, R. (2019a), "Viscoelastic analysis of silica nanoparticle-polymer nanocomposites", Compos. Part B: Eng., 158, 169-178. https://doi.org/10.1016/j.compositesb.2018.09.084
  48. Shi, X., Jaryani, P., Amiri, A., Rahimi, A. and Malekshah, E.H. (2019b), "Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect", Powder Technol., 346, 160-170. https://doi.org/10.1016/j.powtec.2018.12.071
  49. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  50. Sobhy, M. (2015a), "Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory", Appl. Mathe. Model., 40(1), 85-99. https://doi.org/10.1016/j.apm.2015.04.037
  51. Sobhy, M. (2015b), "Thermoelastic Response of FGM Plates with Temperature-Dependent Properties Resting on Variable Elastic Foundations", Int. J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829
  52. Suhatril, M., Osman, N., Sari, P.A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3
  53. Tanaka, Y. (2018), "Active vibration compensator on moving vessel by hydraulic parallel mechanism", Int. J. Hydromechatro., 1(3), 350-359. https://doi.org/10.1504/IJHM.2018.094887
  54. Trabelsi, S, Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047
  55. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., Int. J., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639
  56. Vinyas, M. and Kattimani, S.C. (2018a), "Investigation of the effect of BaTiO3/$CoFe_{2}O_{4}$ particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185(1), 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073
  57. Vinyas, M. and Kattimani, S.C. (2018b), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015
  58. Vinyas, M. and Kattimani, S.C. (2018c), "Finite element evaluation of free vibration characteristics of magneto-electroelastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069
  59. Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018), "Effect of $BaTiO_{3}/CoFe_{2}O_{4}$micro-topological textures on the coupled static behaviour of magneto-electro-thermoelastic beams in different thermal environment", Mater. Res. Express, 5, 125702. https://doi.org/10.1088/2053-1591/aae0c8
  60. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Hoang, N. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., Int. J., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503
  61. Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci., 468(2147), 3458-3475. https://doi.org/10.1098/rspa.2012.0214
  62. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y. and Wakil, K. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439
  63. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  64. Zenkour, A. (2013), "Hygrothermal analysis of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7(7), 687-700. 1 https://doi.org/100.2140/jomms.2012.7.687 https://doi.org/10.2140/jomms.2012.7.687
  65. Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of transverse shear and normal strains on fg plates resting on elastic foundations under hygro-thermo-mechanical loading", Int. J. Appl. Mech., 6(5), 1450063. https://doi.org/10.1142/S175882511450063X
  66. Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B: Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
  67. Zhang, J. and Wang, C. (2012), "Vibrating piezoelectric nanofilms as sandwich nanoplates", J. Appl. Phys., 111(9), 094303. https://doi.org/10.1063/1.4709754

Cited by

  1. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.355
  2. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.343
  3. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  4. In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.101
  5. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  6. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  7. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697