DOI QR코드

DOI QR Code

A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution

  • Hejri, Zahra (Department of Chemical Engineering, Quchan Branch, Islamic Azad University) ;
  • Hejri, Mehri (Department of Chemical Engineering, Quchan Branch, Islamic Azad University) ;
  • Omidvar, Maryam (Department of Chemical Engineering, Quchan Branch, Islamic Azad University) ;
  • Morshedi, Sadjad (Department of Chemical Engineering, Quchan Branch, Islamic Azad University)
  • Received : 2018.12.03
  • Accepted : 2019.06.28
  • Published : 2020.01.25

Abstract

In order to develop a new adsorbent for removal of formaldehyde from aqueous solution, surface modification of TiO2 nanoparticles was performed with 2,4-Dinitrophenylhydrazine (DNPH) that have a strong affinity to the formaldehyde. Sodium dodecyl sulfate (SDS) surfactant was used to improve the DNPH grafting to TiO2 surface. Modified adsorbents were characterized by SEM, TEM, XRD, EDX and FTIR. Since the COD level in wastewaters including formaldehyde is considerable, it is necessary to determine the COD content of the synthetic wastewater. In order to determine the optimal removal conditions, the effect of contact time (60-210 min), pH (4-10) and adsorbent dosage (0.5-1.5 g/L) on adsorption and COD removal efficiencies were studied, using response surface method. EDX and FTIR analysis confirmed the presence of nitrogen-containing functional groups on the modified TiO2 surface. The maximum formaldehyde adsorption and COD removal efficiencies by modified TiO2 were about 15.65 and 7.35% higher than the unmodified nanoparticles respectively. Therefore, the grafting of nano-TiO2 with DNPH would greatly improve its formaldehyde adsorption efficiency. The optimum conditions determined for a maximum formaldehyde removal of 99.904% and a COD reduction of 94.815% by TiO2/SDS/DNPH nanocomposites were: adsorbent dosage 1.100 g/L, pH 7.424 and the contact time 183.290 min.

Keywords

Acknowledgement

The authors sincerely thank the officials at Islamic Azad University, Quchan Branch, for their financial support and the provision of laboratory equipment.

References

  1. Afkhami, A., Bagheri, H. and Madrakian, T. (2011), "Alumina nanoparticles grafted with functional groups as a new adsorbent in efficient removal of formaldehyde from water samples", Desalination, 281, 151-158. https://doi.org/10.1016/j.desal.2011.07.052
  2. Ahmed, S.S. (2015), "Recovery of Titania from Waste-Sludge of Majmaah Water Treatment Plant", The 3rd International Conference on Water, Energy and Environment (ICWEE), AUS, UAE, March.
  3. Al-Rashdi, B., Tizaoui, C. and Hilal, N. (2012), "Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide ($B_{2}O_{3}/TiO_{2}$) adsorbent", Chem. Eng. J. 183(1), 294-302. https://doi.org/10.1016/j.cej.2011.12.082
  4. Bagheri, M., Nasiri, M., Talaiekhozani, A. and Abedi, I. (2018), "Equilibrium Isotherms of Formaldehyde Elimination from the Aqueous Solutions Containing Natural Adsorbents of Rice Bran and the Resulting Ashes", J. Hum. Environ. Health Promot., 4(2), 87-93. https://doi.org/10.29252/jhehp.4.2.8
  5. Bagheri, S., Shameli, K. and Abd Hamid, S.B. (2012), "Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method", J. Chem., 2013, 1-5. http://dx.doi.org/10.1155/2013/848205
  6. Bernabe, D.P., Herrera, R.A.S., Doma, B., Fu, M.-L., Dong, Y. and Wang, Y.-F. (2015), "Adsorption of low concentration formaldehyde in air using ethylene-diamine-modified diatomaceous earth", Aerosol. Air Qual. Res., 15(4), 1652-1661. https://doi.org/10.4209/aaqr.2015.05.0292
  7. Devi, T.U., Lawrence, N., Babu, R.R., Ramamurthi, K. and Bhagavannarayana, G. (2010), "Structural and Optical Characterization Studies on 2, 4-dinitrophenylhydrazine Single Crystal", J. Min. Mater. Charact. Eng., 9(04), 321.
  8. Ebrahimi, S. and Borghei, M. (2011), "Formaldehyde biodegradation using an immobilized bed aerobic bioreactor with pumice stone as a support", Sci. Iran., 18(6), 1372-1376. https://doi.org/10.1016/j.scient.2011.01.001
  9. Ghasemi, Z., Seif, A., Ahmadi, T.S., Zargar, B., Rashidi, F. and Rouzbahani, G.M. (2012), "Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-$TiO_{2}$ from aqueous solution", Adv. Powder Technol., 23(2), 148-156. https://doi.org/10.1016/j.apt.2011.01.004
  10. Hejri, Z., Seifkordi, A.A., Ahmadpour, A., Zebarjad, S.M. and Maskooki, A. (2013), "Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles", Int. J. Min. Met. Mater., 20(10), 1001-1011. https://doi.org/10.1007/s12613-013-0827-z
  11. Hidalgo, A., Lopategi, A., Prieto, M., Serra, J. and Llama, M. (2002), "Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1", Appl. Microbiol. Biotechnol., 58(2), 260-264. https://doi.org/10.1007/s00253-001-0876-5
  12. Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J. and Wang, X. (2019), "Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-theart review", Biochar., 1(1), 45-73. https://doi.org/10.1007/s42773-019-00006-5
  13. Jafari, S., Azizian, S. and Jaleh, B. (2012), "Enhancement of methyl violet removal by modification of $TiO_{2}$ nanoparticles with AgI", J. Ind. Eng. Chem., 18(6), 2124-2128. https://doi.org/10.1016/j.jiec.2012.06.006
  14. Jiang, Y., Luo, Y., Zhang, F., Guo, L. and Ni, L. (2013), "Equilibrium and kinetic studies of CI Basic Blue 41 adsorption onto N, F-codoped flower-like $TiO_{2}$ microspheres", Appl. Surf. Sci., 273 448-456. https://doi.org/10.1016/j.apsusc.2013.02.061
  15. Khanmohammadi, M., Dalali, N., Karami, F., Garmarudi, A.B. and Nemati, H. (2012), "Quantitative determination of formaldehyde by spectrophotometry utilizing multivariate Curve resolution alternating least squares", Bull. Chem. Soc. Ethiop., 26(2), 299-304. http://dx.doi.org/10.4314/bcse.v26i2.13
  16. Khezri, S.M. and Bloorchian, A.A. (2009), "Titanium dioxide extraction from paint sludge of auttomotive industry case study: paint sludge of saipa shop", Environ. Eng. Manag. J., 8(1), 141-145. https://doi.org/10.30638/eemj.2009.021
  17. Kowalik, P. (2011), "Chemical pretreatment of formaldehyde wastewater by selected Advanced Oxidation Processes (AOPs)", Chall. Mod. Technol., 2(4), 42-48.
  18. Krishnamurthy, A., Thakkar, H., Rownaghi, A.A. and Rezaei, F. (2018), "Adsorptive Removal of Formaldehyde from Air Using Mixed-Metal Oxides", Ind. Eng. Chem. Res., 57(38), 12916-12925. https://doi.org/10.1021/acs.iecr.8b02962
  19. Le, Y., Guo, D., Cheng, B. and Yu, J. (2013), "Bio-templateassisted synthesis of hierarchically hollow $SiO_{2}$ microtubes and their enhanced formaldehyde adsorption performance", Appl. Surf. Sci., 274(1), 110-116. https://doi.org/10.1016/j.apsusc.2013.02.123
  20. Leon, A., Reuquen, P., Garin, C., Segura, R., Vargas, P., Zapata, P. and Orihuela, P.A. (2017), "FTIR and Raman characterization of $TiO_{2}$ nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol", Appl. Sci., 7(1), 49-58. https://doi.org/10.3390/app7010049
  21. Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Hayat, T. and Wang, X. (2018), "Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions", Chem. Soc. Rev., 47(7), 2322-2356. https://doi.org/10.1039/C7CS00543A
  22. Li, Q., Sritharathikhun, P. and Motomizu, S. (2007), "Development of novel reagent for Hantzsch reaction for the determination of formaldehyde by spectrophotometry and fluorometry", Anal. Sci., 23(4), 413-417. https://doi.org/10.2116/analsci.23.413
  23. Li, X., Liu, Y., Zhang, C., Wen, T., Zhuang, L., Wang, X., Song, G., Chen, D., Ai, Y. and Hayat, T. (2018), "Porous $Fe_{2}O_{3}$ microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions", Chem Eng. J., 336, 241-252. https://doi.org/10.1016/j.cej.2017.11.188
  24. Lim, K.-h. and Shon, B.-h. (2015), "Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves", Int. J. Emerg. Technol. Adv. Eng., 5, 25-32.
  25. Lu, Y., Chang, P.R., Zheng, P. and Ma, X. (2014), "Rectorite- $TiO_{2}-Fe_{3}O_{4}$ composites: Assembly, characterization, adsorption and photodegradation", Chem. Eng. J., 255, 49-54. https://doi.org/10.1016/j.cej.2014.06.062
  26. Mehta, S. and Patel, S. (1951), "Recovery of titania from the bauxite sludge", J. Am. Chem. Soc., 73(1), 226-227. https://doi.org/10.1021/ja01145a076
  27. Moteleb, M.A., Suidan, M.T., Kim, J. and Maloney, S.W. (2002), "Pertubated loading of a formaldehyde waste in an anaerobic granular activated carbon fluidized bed reactor", Water Res., 36(15), 3775-3785. https://doi.org/10.1016/S0043-1354(02)00095-7
  28. Moussavi, G., Yazdanbakhsh, A. and Heidarizad, M. (2009), "The removal of formaldehyde from concentrated synthetic wastewater using $O_{3}/MgO/H_{2}O_{2}$ process integrated with the biological treatment", J. Hazar. Mater., 171(1-3), 907-913. https://doi.org/10.1016/j.jhazmat.2009.06.090
  29. Nash, T. (1953), "The colorimetric estimation of formaldehyde by means of the Hantzsch reaction", Biochem. J., 55(3), 416-421. https://doi.org/10.1042/bj0550416
  30. Osada, M., Watanabe, M., Sue, K., Adschiri, T. and Arai, K. (2004), "Water density dependence of formaldehyde reaction in supercritical water", J. Supercrit. Fluids., 28(2), 219-224. https://doi.org/10.1016/S0896-8446(03)00042-1
  31. Paliulis, D. (2016), "Removal of formaldehyde from synthetic wastewater using natural and modified zeolites", Pol. J. Environ. Stud., 25(1), 251-257. https://doi.org/10.15244/pjoes/60727
  32. Parida, K., Mishra, K.G. and Dash, S.K. (2012), "Adsorption of toxic metal ion Cr (VI) from aqueous state by $TiO_{2}$-MCM-41: equilibrium and kinetic studies", J. Hazar. Mater., 241, 395-403. https://doi.org/10.1016/j.jhazmat.2012.09.052
  33. Parshetti, G.K. and Doong, R. (2010), "Dechlorination and photodegradation of trichloroethylene by $Fe/TiO_{2}$ nanocomposites in the presence of nickel ions under anoxic conditions", Appl. Catal. B: Environ., 100(1), 116-123. https://doi.org/10.1016/j.apcatb.2010.07.020
  34. Petala, E., Baikousi, M., Karakassides, M.A., Zoppellaro, G., Filip, J., Tucek, J., Vasilopoulos, K.C., Pechousek, J. and Zboril, R. (2016), "Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water", Phys. Chem. Che. Phys., 18(15), 10637-10646. https://doi.org/10.1039/C6CP01013J
  35. Priya, K.R., Sandhya, S. and Swaminathan, K. (2009), "Kinetic analysis of treatment of formaldehyde containing wastewater in UAFB reactor", Chem. Eng. J., 148(2-3), 212-216. https://doi.org/10.1016/j.cej.2008.08.036
  36. Rong, H., Liu, Z., Wu, Q., Pan, D. and Zheng, J. (2010), "Formaldehyde removal by Rayon-based activated carbon fibers modified by P-aminobenzoic acid", Cellulose., 17(1), 205-214. https://doi.org/10.1007/s10570-009-9352-7
  37. Safavi1a, B., Asadollahfardi, G. and khodadadi Darban, A. (2017), "Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles", Adv. Nano Res., Int. J., 5(1), 27-34. https://doi.org/10.12989/anr.2017.4.1.027
  38. Salman, M., Athar, M., Shafique, U., Rehman, R., Ameer, S., Ali, S.Z. and Azeem, M. (2012), "Removal of formaldehyde from aqueous solution by adsorption on kaolin and bentonite: a comparative study", Turkish J. Eng. Env. Sci., 36(3), 263-270.
  39. Sobhanardakani, S. and Zandipak, R. (2015), "2, 4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfatecoated magnetite nanoparticles for effective removal of Cd (II) and Ni (II) ions from water samples", Environ. Monit .Assess., 187(7), 412. https://doi.org/10.1007/s10661-015-4635-y
  40. Song, Y., Qiao, W., Yoon, S.H., Mochida, I., Guo, Q. and Liu, L. (2007), "Removal of formaldehyde at low concentration using various activated carbon fibers", J. Appl. Polym. Sci., 106(4), 2151-2157. https://doi.org/10.1002/app.26368
  41. Srisuda, S. and Virote, B. (2008), "Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials", J. Environ. Sci., 20(3), 379-384. https://doi.org/10.1016/S1001-0742(08)60059-5
  42. Su, Y., Liang, H., Zhao, S. and Liu, K. (2018), "Removal efficiency and mechanisms of formaldehyde by five species of plants in air-plant-water system", Hum. Ecol. Risk. Assess., 1-13. https://doi.org/10.1080/10807039.2018.1474432
  43. Suriyaraj, S., Vijayaraghavan, T., Biji, P. and Selvakumar, R. (2014), "Adsorption of fluoride from aqueous solution using different phases of microbially synthesized $TiO_{2}$ nanoparticles", J. Environ. Chem. Eng., 2(1), 444-454. https://doi.org/10.1016/j.jece.2014.01.013
  44. Szczurek, A., Zajiczek, Z., Sibilak, D. and Maciejewska, M. (2018). "Formaldehyde removal by the internal wall paint- preliminary study", E3S Web of Conferences. https://doi.org/10.1051/e3sconf/20184400173
  45. Teiri, H., Pourzamzni, H. and Hajizadeh, Y. (2018), "Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health", Int. J. Prev. Med., 9(1), 70-77. https://doi.org/10.4103/ijpvm.IJPVM_269_16
  46. Veenagayathri, K. and Vasudevan, N. (2017), "Biodegradation of formaldehyde under saline conditions by a moderately halophilic bacterial consortium", Curr. World Environ., 5(1), 31-38. http://dx.doi.org/10.12944/CWE.5.1.05
  47. Visa, M., Carcel, R.A., Andronic, L. and Duta, A. (2009), "Advanced treatment of wastewater with methyl orange and heavy metals on $TiO_{2}$, fly ash and their mixtures", Catal. Today. 144(1), 137-142. https://doi.org/10.1016/j.cattod.2008.12.032
  48. Xie, X. and Gao, L. (2009), "Effect of crystal structure on adsorption behaviors of nanosized $TiO_{2}$ for heavy-metal cations", Curr. Appl. Phys., 9(3), S185-S188. https://doi.org/10.1016/j.cap.2009.01.035