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INTRODUCTION

Toxoplasma gondii, a member of the Apicomplexa phylum, is 
an obligate protozoan pathogen that can invade and replicate 
in almost all nucleated cells of warm-blooded animals. Almost 
a third of the global human population is infected with T. gon-

dii [1,2]. For most immunocompetent individuals, infection is 
asymptomatic, chronic, and life-long; however, T. gondii infec-
tion in immunocompromised individuals and pregnant 
women can cause severe illness with high morbidity and mor-
tality rates [2,3]. First-line treatment for toxoplasmosis is com-
bined administration of pyrimethamine and sulfadiazine; 
however, because of their potential off-target effects, there is an 

urgent need to develop therapeutic alternatives with fewer, 
more benign side effects [4].

Autophagy, which plays a pivotal role in maintaining cellu-
lar homeostasis, is a mechanism by which cells remove dys-
functional or dispensable cellular components such as dam-
aged cytosolic organelles and long-lived/misfolded proteins 
through the fusion of autophagosomes and lysosomes [5,6]. 
Accumulating evidence suggests that selective autophagy, also 
known as xenophagy, helps protect the host against diverse in-
fectious agents including bacteria, viruses, and protozoa [7,8]. 
During T. gondii infection, the host's autophagy machinery 
contributes to the restriction of intracellular survival by main-
taining a balance between the host immune response and ex-
ploitation of the host by the parasite [9].

Prior studies of 4-hydroxybenzaldehyde (4-HBA), an essen-
tial bioactive constituent of the traditional Chinese herb Gas-

trodiae Rhizoma, reported anti-diabetic properties [10], antioxi-
dant properties [11], and angiogenesis-promoting effects [12]. 
We previously reported that 4-HBA protects against DSS-in-
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Abstract: Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu-
lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec-
tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4-
HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine 
bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the 
number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired 
by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or 
EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres-
sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with 
autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1-
mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.
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duced colitis by regulating immune tolerance and excessive in-
flammatory responses [13]. A recent study demonstrated that 
4-HBA increased the susceptibility to amphenicol antibiotics 
including chloramphenicol and thiamphenicol in Acineto-
bacter baumannii [14]; however, the function of 4-HBA in infec-
tious diseases has not yet been characterized.

In this study, we investigated the immunomodulatory prop-
erties of 4-HBA in T. gondii-infected murine bone marrow-de-
rived macrophages (BMDMs). We found that 4-HBA restricts 
the intracellular growth of T. gondii via SIRT1-mediated au-
tophagy activation. Collectively, our results suggest that 4-HBA 
may be a promising therapeutic alternative to treat patients in-
fected with T. gondii.

MATERIALS AND METHODS

Mice and cell culture
Wild-type C57BL/6 mice were purchased from Koatech 

(Gyeonggi-do, Korea). Animal-related experimental proce-
dures were approved by the Institutional Animal Care and Use 
Committee, Chungnam National University College of Medi-
cine (CNU-00706; Daejeon, Republic of Korea). Bone marrow-
derived macrophages were differentiated during 5–7 days in 
medium with macrophage colony-stimulating factor, as de-
scribed previously [15]. The culture medium is consisted of 
Dulbecco’s modified Eagle’s medium (DMEM; Welgene) sup-
plemented with 10% fetal bovine serum (FBS, Gibco BRL) and 
1% Antibiotic-Antimycotic (GibcoTM Antibiotic-Antimycotic 
(100X); Gibco BRL). The human retinal pigment epithelial cell 
line ARPE-19 (American Type Culture Collection, Manassas, 
Virginia, USA) were grown in DMEM/F-12 (Welgene) with 
10% FBS and 1% Antibiotic-Antimycotic.

Parasite preparation
T. gondii RH strain was multiplied in ARPE-19 cells at a mul-

tiplicity of infection (MOI) of 5 and grown for 2-3 days at 
37˚C and 5% CO2. T. gondii RH strain expressing transgenic 
green fluorescent protein (GFP-RH) were kindly provided by 
Dr. Yoshifumi Nishikawa (Obihiro University of Agriculture 
and Veterinary Medicine, Japan). Host cell debris and parasites 
were washed in phosphate-buffered saline (PBS) after sponta-
neous host cell rupture. Final pellet was suspended in cold 
DMEM, and then passed through a 26-gauge needle and a 5.0 
μm pore filter (Millipore, Billerica, Massachusetts, USA).

Reagents and antibodies
4-HBA (144088), 3-methyladenine (3-MA, M9281), EX-527 

(E7034), sirtinol (S7942), wortmannin (WM, W1628), di-
methylsulfoxide (DMSO, D2650) or LC3 (L8918) were from 
Sigma-Aldrich. β-Tubulin (ab6046) and SIRT1 (AB28170) were 
purchased from Abcam. Ethanol or DMSO was added to mac-
rophages cultures at 0.05% (v/v) and used as a solvent control.

Cell viability assays
The cytotoxicity effects of 4-HBA on BMDMs were deter-

mined using cell count kit (CCK) 8 (Dojindo Molecular Tech-
nologies), according to the manufacturer’s instructions. CCK8 
solution (10 µl) was added after cells were incubated with 
4-HBA for 18 or 48 hr. Absorbance was measured at 450 nm on 
a microplate reader (SpectraMax ABS Plus, Molecular Devices).

RNA extraction, real-time quantitative PCR, and western 
blot analysis

RNA extraction and real-time quantitative PCR were per-
formed as described previously [15]. The sequences of the prim-
ers used were as follows: Sag1 (forward: 5′-ATCGCCTGAGA-
AGCATCACT-3′; reverse: 5′-GCGAAAATGGAAACGTGACT-3′), 
β-actin (forward: 5′-TCATGAAGTGTGACGTTGACATCCGT-3′; 
reverse: 5′-CCTAGAAGCATTTGCGGTGCACGATG-3′).

Western blot analysis was performed as described previously 
[15]. Collected cell lysates was lysed using RIPA buffer (10 mM 
Tris-HCl at pH 8.0, 1 mM EDTA, 140 mM NaCl, 0.1% SDS, 
0.1% sodium deoxycholate and 1% Triton X-100) containing 
a protease inhibitor cocktail (Roche). The protein extracts 
boiled with SDS sample buffer was subjected to sodium do-
decyl sulfate polyacrylamide gel electrophoresis and then 
polyvinylidene fluoride membranes (Millipore Corp.). Che-
miluminescence assay kit (ECL; Millipore Corp.) was used to 
develope membranes.

Quantification of intracellular T. gondii
BMDMs cultured on 22-mm glass coverslips were infected 

with GFP-RH strain for indicated time periods, and then cover-
slips were washed using warmed PBS. After fixation with 4% 
paraformaldehyde in PBS for 10 min and permeabilization with 
0.25% Triton X-100 in PBS for 10 min, Texas Red®-X phalloidin 
(Life Technologies Corporation) and 4′6-diamidino-2-phenyl-
indole (DAPI, Sigma) were used to visualize F-actin in the cyto-
skeleton and nucleus. Cover slides were analyzed by confocal 
laser scanning microscopy (Leica TCS SP8, Leica microsystems).
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Immunofluorescence analyses
Immunofluorescence analysis of endogenous LC3 puncta 

and colocalization of LC3 with GFP-RH was performed as de-
scribed previously [16]. Followed by fixation and permeabili-
zation, cells in coverslips were stained with LC3 Ab (MBL In-
ternational, PM036) for 2 hr at room temperature. After wash-
ing excess primary Ab with PBS, cells were incubated with Al-
exa Fluor 488-conjugated goat anti-rabbit IgG (Molecular 
Probes) or Alexa Fluor 594-conjugated goat anti-rabbit IgG 
(Molecular Probes) for 2 hr. Nucleus was stained with DAPI. 
Fluorescence images were obtained using confocal laser scan-
ning microscopy. Each experiment for immunofluorescence 
microscopy contains at least 70 cells scored from 8 random 
fields for analysis of endogenous LC3 puncta. 70 internalized 
GFP-RH per experimental condition were counted for quanti-
tative data of colocalization between LC3 with GFP-RH.

Statistical analysis
A 2-tailed Student’s t test was used to analyze differences be-

tween independent experimental data (means± standard devi-
ation [SD] or means± standard error [SEM]). Differences were 
deemed significant at P-value under 0.05.

RESULTS

Cytotoxic effects of 4-HBA in BMDMs
To evaluate the cytotoxicity of 4-HBA, we assessed the effects 

of 4-HBA on BMDM viability by CCK8 assay. Incubating BMD-
Ms with 10 µM 4-HBA had no significant effect on cell viability 
after 18 hr (Fig. 1A) or 48 hr (Fig. 1B); however, cell viability de-
creased by approximately 35% at 24 hr (Fig. 1A) and 92% at 48 
hr after treatment with 50 µM 4-HBA (Fig. 1B). Based on these 

results, for subsequent experiments we used 10 µM 4-HBA, a 
concentration that did not induce cytotoxicity in BMDMs, and 
evaluated the antiparasitic effects of 4-HBA on T. gondii infection.

4-HBA inhibitsed the intracellular growth of T. gondii in 
BMDMs

T. gondii can invade and live within all nucleated cells (in-
cluding macrophages and dendritic cells) by forming parasi-
tophorous vacuoles (PVs) [17], thus, we tested whether 4-HBA 
exhibit antiparasitic effects against T. gondii infection in BMD-
Ms. BMDMs were infected with a GFP-expressing RH strain of 
T. gondii (GFP-RH) for the indicated periods (Fig. 2A-C), and 
then evaluated for intracellular growth of T. gondii. As shown in 
Fig. 2A and B, the number of T. gondii-infected cells was mark-
edly suppressed by 4-HBA treatment in a dose-dependent man-
ner. Moreover, intracellular proliferation of the parasite was 
also inhibited in 4-HBA-stimulated BMDMs when compared 
to BMDMs treated with SC (Fig. 2A and C). In addition, we as-
sessed the antiparasitic effects of 4-HBA by analyzing the ex-
pression levels of T. gondii surface antigen 1 (SAG1). As shown 
in Fig. 2D, SAG1 mRNA expression significantly decreased in 
4-HBA-treated BMDMs in a concentration-dependent manner. 
These results indicate that 4-HBA plays an essential role in the 
activation of antiparasitic responses to T. gondii infection.

4-HBA-induced autophagy played an essential role in the 
activation of antiparasitic responses in primary murine 
macrophages

Previous studies demonstrated that autophagy contributes 
to host immune defenses against T. gondii infection [8,18]; 
however, the role of 4-HBA in autophagy activation has not 
been characterized. To determine whether 4-HBA treatment 

Fig. 1. Cytotoxic effect of 4-HBA on BMDMs by CCK8 assays. (A, B) Evaluation of cell viability at 18 hr (A) or 48 hr (B) after 4-HBA treat-
ment in BMDMs. **P<0.01, ***P<0.001. SC, solvent control.
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induces autophagy in macrophages, we evaluated the number 
of cells with microtubule-associated protein 1 light chain 3 
(LC3), an essential autophagy effector. As shown in Fig. 3A, 
4-HBA treatment increased the number of LC3 aggregates in 
BMDMs. We next attempted to investigate the role of autopha-
gy in 4-HBA-mediated anti-toxoplasma activity. As shown in 
Fig. 3B, the anti-toxoplasma activity of 4-HBA was significantly 
attenuated by treating T. gondii-infected BMDMs with autoph-
agy inhibitors (3MA or WM). Our results suggest that autoph-
agy is required for 4-HBA-induced activation of antiparasitic 
responses in primary macrophages.

4-HBA activatesd the induction of SIRT1, which 
contributes to the activation of antiparasitic responses in 
primary murine macrophages

Growing evidence suggests that SIRT1 is an essential regula-
tor of diverse physiological conditions and activities such as 
cancer, metabolism, angiogenesis, and neuronal development 

[19,20]. Moreover, recent studies demonstrate that SIRT1 can 
regulate innate and adaptive immune responses, and impaired 
SIRT1 activity is closely linked with the pathogenesis of auto-
immune and inflammatory diseases [21]. We found that 
4-HBA increased the expression of SIRT1 within 2 hr, and the 
increase was sustained for up to 18 hr in BMDMs (Fig. 4A). 
Next, we investigated if SIRT1 was required for 4-HBA-induced 
antiparasitic responses. SAG1 mRNA expression decreased sig-
nificantly in 4-HBA-treated BMDMs (Fig. 4B and C); however, 
these effects disappeared in the presence of EX-527 (Fig. 4B) 
or sirtinol (Fig. 4C), selective SIRT1 inhibitors. These data sug-
gest that SIRT1 controls 4-HBA-mediated growth inhibition of 
T. gondii in primary murine macrophages.

SIRT1 is required for 4-HBA-mediated activation of 
autophagy in BMDMs

Previous studies demonstrate that SIRT1 regulates autopha-
gy activation through the deacetylation of autophagy-related 

Fig. 2. 4-HBA increased antiparasitic activity in T. gondii-infected macrophages. (A-D) BMDMs were infected with GFP-RH strain (A, B, 
and C) or RH strain (D) for 2 hr (moi=1) and then treated with 4-HBA for 18 hr. (A) Representative images showing T. gondii invasion into 
and growth in BMDMs. Scale bar=10 μm. (B) Proportion of cells infected with T. gondii to total cells. (C) Number of parasites per vacu-
ole. (D) Quantitative r-t PCR on SAG1 mRNA. *P<0.05, **P<0.01, ***P<0.001, U, untreated; SC, solvent control; Tg, T. gondii; ND, not 
detected.
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genes (Atgs) and regulators of autophagy [22]. To examine 
whether 4-HBA-induced autophagy is mediated by SIRT1, we 
evaluated the formation of autophagosomes by BMDMs. We 
found that 4-HBA-mediated the increase of LC3-positive vesi-
cles was significantly attenuated by pretreating BMDMs with 
EX-527 or sirtinol (Fig. 5A). Moreover, we also found that 
4-HBA significantly increased the intracellular colocalization 

of LC3-II-positive autophagic vacuoles with T. gondii-contain-
ing PVs in BMDMs as compared to non-treated infected cells; 
however, these colocalizations were significantly attenuated by 
EX-527 or sirtinol (Fig. 5B, C). These data suggest that SIRT1 is 
an essential mediator in 4-HBA-induced autophagy activation 
in primary macrophages.

Fig. 3. 4-HBA-induced autophagy was required for the intracellular restriction of T. gondii in BMDMs. (A) Immunofluorescence microsco-
py on LC3 puncta formation in BMDMs treated with 4-HBA. Representative images (top; Scale bar=10 μm). LC3 punctate foci per cell 
(Lower panel). (B) SAG1 mRNA level guantifed by rt-PCR. BMDMs were infected with T. gondii RH strain, treated with 3-MA (10 μM) or 
WM (100 nM), and then incubated with 4-HBA (10 μM) for 18 hr. **P<0.01, ***P<0.001.
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DISCUSSION

Autophagy is a tightly regulated homeostatic process that is 
essential to maintain cellular integrity, and impaired autopha-
gy activation has been linked to the progression of physiologi-
cal and pathological disorders [23]. Accumulating evidence 
suggests that xenophagy, a specialized, selective form of au-
tophagy, is involved in activating protective host immunity re-
sponses via canonical and non-canonical pathways [24]; 
thereby, eliminating intracellular pathogens [7,25]. Many 
studies have evaluated flavonoids, a group of plant metabo-
lites, as potential autophagy-inducing agents, which may be 
promising therapeutic alternatives for various autophagy de-

regulation-related diseases [26]. During T. gondii infection, au-
tophagy can either protect the host or promote the pathophys-
iology of the parasite. Initial studies demonstrate that T. gondii 
promotes autophagy in host cells so they may utilize cellular 
nutrients in the early phases of infection [27]; however, in late 
infection phases, proliferating T. gondii suppress autophagy in 
host cells [28]. Recent studies suggest that canonical [29] or 
non-canonical autophagy [30,31] are involved in the restric-
tion of intracellular T. gondii.

Protozoan parasites of the phylum Apicomplexa can survive 
and proliferate within diverse cell types. They are the etiologi-
cal agent for various human diseases including toxoplasmosis, 
malaria, and cryptosporidiosis. 4-HBA is a hydroxybenzalde-

Fig. 5. Sirt1 contributed 4-HBA to induce formation and maturation of autophagosome and led activation of antiparasitic responses to T. 
gondii infection. (A) Immunofluorescence micrographs showing the formation of LC3 puncta in BMDMs treated with 4-HBA (10 μM; 
18hr) in SC, EX-527 (4 μM), or sirtinol (30 μM). Left panel, representative images. Right panel, LC3 punctate foci in the cells. Scale 
bar=10 μm. (B, C) BMDMs were infected with GFP-RH strain, followed by treatments of SC, EX-527 (4 μM), or sirtinol (30 μM), and 
then incubated with 4-HBA (10 μM) for 18 hr. Cells were stained with Alexa 594-conjugated LC3 (red) and DAPI (blue), (B) Immunofluo-
rescence micrographs showing co-localization of GFP-RH strain (green) and LC3 (red). Scale bar=10 μm. (C) Co-locol of LC3 with T. 
gondii. ****P<0.001. SC, solvent control; Tg, T. gondii.
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hyde and a major bioactive compound of Gastrodiae Rhizoma. 
A recent study suggests that 4-HBA, isolated from Alpinia con-

chigera, is one of the antimicrobials that affects Staphylococcus 
aureus, Microsporum canis, Candida albicans, and Trichophyton ru-

brum [32]. However, the roles of 4-HBA in autophagy and an-
tiparasitic responses have not been investigated. In this study, 
we found that 4-HBA induced autophagy in primary macro-
phages, which is required to inhibit the intracellular growth of 
T. gondii.

To date, 7 mammalian Sirts have been identified. They are 
essential modulators of cell survival/death and energy status 
[33]. Among them, SIRT1, a class III histone deacetylase and 
NAD+-dependent protein, acts as a metabolic sensor of cellular 
energy. [19]. Several studies have demonstrated that SIRT1 ac-
tivation is required for the regulation of various cellular re-
sponses [34]. For example, resveratrol, a SIRT1 activator, pro-
motes SIRT1-dependent autophagy and ameliorates excessive 
inflammatory responses [35,36]. Moreover, we previously re-
ported that the AMP-activated protein kinase pathway and 
SIRT1-induced orphan nuclear receptor estrogen-related recep-
tor α (ESRRA) expression are required for the activation of au-
tophagy and antimicrobial responses against Mycobacterium 
tuberculosis infection [37]. Herein, we found that the inactiva-
tion of SIRT1 inhibited 4-HBA-induced autophagy and anti-
parasitic responses, indicating that SIRT1-mediated autophagy 
is crucial for host-protective effects of 4-HBA against T. gondii 
infection.

In summary, we found that 4-HBA significantly restricted 
the intracellular growth of T. gondii via SIRT1-mediated au-
tophagy in primary murine macrophages, and mediated T. 

gondii infection. These findings suggest that 4-HBA may be a 
promising, novel toxoplasmosis therapeutic. In future studies, 
we will evaluate the potential synergy between 4-HBA and 
standard therapeutics, such as pyrimethamine and sulfadia-
zine, to treat T. gondii infection.
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