DOI QR코드

DOI QR Code

헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석

Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit

  • 투고 : 2019.09.24
  • 심사 : 2020.02.27
  • 발행 : 2020.03.01

초록

고-대역폭(High Bandwidth)의 헬리콥터 반응특성을 위한 높은 수준의 피드백 제어 게인의 사용은 로터 모드에 의해 항공기의 불안정성이 증가한다. 본 논문에서는 EC155B1 헬리콥터 모델링을 수행하고 이를 이용하여 롤 축의 각속도 및 자세 피드백 게인의 증가에 따른 항공기의 안정성을 분석하였다. 그리고 로터 플랩 모드에 의해 제한되는 롤 축 각속도 및 자세 피드백 제어 게인을 검토하였다. 또한 노이즈 제거 필터의 사용으로 비행 제어시스템의 위상지연이 증가 시 헬리콥터 안정성에 영향을 주는 피드백 제어 게인의 한계를 검토하였다.

The use of a high gain flight control system to achieve high bandwidth performance increase the instability of a helicopter. To investigate these phenomena numerically, high fidelity EC155B1 helicopter model and simplified flight control system that include actuator, digital processor and noise rejection filter was developed. A study conducts an analytical investigation of roll axis stability of the helicopter model as feedback gain increases. And this study analyzes roll-rate and roll-attitude feedback gains limited by rotor flap mode. The results indicate that the phase delays caused by the filter can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

키워드

참고문헌

  1. McKillip, R., and Keller, J., "A Networked Simulation Environment for Dynamic Interface Flight Control Design and Evaluation," Proceedings of the AHS International 66th Annual Forum, No. 2, American Helicopter Soc., Alexandria, VA, May 2010, pp. 1801-1813.
  2. Chen, R. T. N., and Hindson, W. S., "Influence of High-Order Dynamics on Helicopter Flight-Control System Bandwidth," Journal of Guidance, Control, and Dynamics, Vol. 9, No. 2, 1986, pp. 190-197. https://doi.org/10.2514/3.20089
  3. Ji, H., Chen, R., and Li, P., "Rotor State Feedback Control to Alleviate Pilot Workload for Helicopter Shipboard Operations," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3088-3099. https://doi.org/10.2514/1.G002304
  4. Deftler, M. A., "UH-60A Helicopter Stability Augmentation Study," 14th European Rotorcraft Forum, Milano, Italy, Sep. 1988.
  5. Padfield, G. D., Helicopter Flight Dynamics, 2nd edition, Blackwell, Oxford, England, U.K., 2017, pp. 299-306.
  6. Anonymous, "FLIGHTLAB Theory Manual - Volumn One," Advanced Rotorcraft Technology, Inc., June 2006.
  7. Yang, C. D., "Design of Handling Quality Assessment Environment Based on FLIGHTLAB Model Using Legacy Simulator," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 6, 2016, pp. 530-536. https://doi.org/10.5139/JKSAS.2016.44.6.530
  8. Peters, D. A., and He, C. J., "Finite State Induced Flow Models Part II: Three-Dimensional Rotor Disk," JOURNAL OF AIRCRAFT, Vol. 32, No. 2, March-April, 1995.
  9. Yang, C. D., and Jung, D., W., "A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope," Journal of Aerospace System Engineering, Vol. 13, No. 3, 2019. pp. 70-77. https://doi.org/10.20910/JASE.2019.13.3.70
  10. Vuillet, A., and d'Ambra, F., "The Fenestron a shrouded tail rotor concept for helicopters," 12th European Rotorcraft Forum, 1986
  11. Leishman, J. G., Principles of Helicopter Aerodynamics, 1st edition. Cambridge, Cambridge University Press, 2002, pp. 229-231.
  12. Anonymous, "FAA Advisory Circular AC120- 63, Helicopter Simulator Qualification," Federal Aviation Authority, November 1994.
  13. Chen, R. T. N., and Hindson, W. S., "Analytical and Flight Investigation of the Influence of Rotor and Other High-Order Dynamics on Helicopter Flight-Control System Bandwidth," NASA TM 86696, 1985.