
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, Feb. 2020                                         807 
Copyright ⓒ 2020 KSII 

Extended CEP Model for Effective 
Enterprise Systems Service Monitoring 

 
Deuk Kyu Kum 

Dept. of Information and Communication Engineering, Yuhan University 
Bucheon-si, Gyeonggi-do, 14780, South Korea 

[e-mail: dkkum1@yuhan.ac.kr]  
*Corresponding author: Deuk Kyu Kum 

 
Received Septebmer 30, 2019; revised December 16, 2019; accepted January 12, 2019;  

published February 29, 2020 

 

Abstract 
 

In recent years, business environments have become more complex; therefore, enterprises 
must be capable of responding flexibly and agilely. For these purposes, effective enterprise 
systems service monitoring and early decision making based on the same, emerge as core 
competency of the enterprise. In addition, enterprise system techniques that filter meaningful 
data are needed to event processing. However, the existing study related with this is nothing 
but discovering of service faults by monitoring depending upon API of BPEL engine or 
middleware, or is nothing but processing of simple events based on low-level events. 
Accordingly, there would be limitations to provide useful business information. In this study, 
we present an extended event processing model that enables delivery of more valuable and 
useful business information through situation detection. Primarily, the event processing 
architecture in an enterprise system is proposed as a definite approach, and then define an 
event meta-model suitable for the proposed architecture. Based on the defined model, we 
propose the syntax and semantics of the elements that make up the event processing language 
include various and progressive event operators, the rules, complex event pattern, etc. In 
addition, an event context mechanism is proposed to analyze more delicate events. Finally, the 
effectiveness and applicability of proposed approach is presented through a case study. 
 
 
Keywords: Complex Event Processing (CEP), Enterprise Systems, Service Monitoring, 
Event Context, Event Driven Architecture (EDA) 

 
A preliminary version of this paper was presented at APIC-IST 2019, and was selected as an outstanding paper. 
 
http://doi.org/10.3837/tiis.2020.02.019                                                                                                                ISSN : 1976-7277 



808                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

1. Introduction 

Because of the complexity and competitiveness of business environments in recent years, 
enterprises today need to be more flexible and agile in their response. To address this 
challenge, enterprises have improved their operational performance to some extent using 
available enterprise systems such as customer relationship management (CRM), enterprise 
resource planning (ERP), and manufacturing execution system (MES) [1]. In addition, as more 
importance is given to early decision making, providing business-level, actionable 
information and quickly responding to changes through run-time service monitoring have 
become core competencies for enterprises. In this context, service-oriented architecture (SOA) 
and event-driven architecture (EDA) are attracting attention as solutions that support these 
enterprise systems [2, 3].  

While SOA increases IT adaptability and efficiency by maximizing the reuse of 
application-independent services, typical communication methods such as request/response 
and synchronous communications are overloaded and can introduce latency, making them 
unsuitable within a monitoring environment where any generated events or exceptions are 
required to be processed in a timely manner. EDA on the other hand can address these 
problems by utilizing publish-and-subscribe and asynchronous communications; EDA also 
ensures agility and responsiveness and complements SOA by efficiently collecting and 
analyzing the various events that occur in enterprise systems [3, 4]. However, little research 
has been conducted on applying or tailoring EDA towards effective service monitoring. There 
is insufficient existing research to provide useful information at the business level, because 
monitoring based on APIs of the business process execution language (BPEL) [5] engine or 
middleware is not only detecting service defects or primitive event processing based on 
low-level events.  

Complex event processing (CEP) is one EDA-based technology suitable for service 
monitoring; CEP analyzes the effects of events from various sources, provides meaningful 
information, and processes corresponding actions [3]. It can also provide a systematic method 
of implementation by using event-condition-action (ECA) rules [4, 6]. 

In this study, an extended CEP model is proposed to effectively handle various events 
occurring in a complex business environment. The proposed event processing model is then 
applied to service monitoring in an enterprise system. Primarily, an event processing 
architecture is proposed for an enterprise system as a definite approach, and then define an 
event meta-model suitable for the proposed architecture. Based on the defined model, the 
syntax and semantics of the constructs are written using a language, including various, 
advanced event operators, patterns and rules. In addition, we propose an event context 
mechanism for more delicate event analysis. Finally, the effectiveness and applicability of the 
proposed approach is presented through a case study. 

2. Related Work 
Existing service monitoring studies only utilize SOA-based technologies, and APIs of the 

BPEL engine or middleware are utilized. In other words, data was collected to calculate the 
quality metrics common to many existing quality models such as time, availability, reliability, 
and security; the range of data that can be collected in this manner is limited to what can be 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  809 

obtained through external environments such as the enterprise service bus (ESB). Lin [7] 
suggested a middleware implementation, called Llama, that extends the ESB. This 
middleware implementation consists of one component for service monitoring, one 
component for detecting service defects, and one component for their diagnosis. Llama is a 
method of monitoring service execution times; it also demonstrates the acquisition of 
monitoring data by utilizing either the ESB monitoring API or additional components (such as 
Profiling Interceptors). Baresi [8] suggested an integrated monitoring framework that operates 
between Dynamo and Astro. Dynamo uses aspect-oriented programming (AOP) to obtain 
monitoring data that the BEPL engine collects while the BPEL process is running. Astro is a 
method of verifying attributes defined in a run-time monitor specification language (RTML) 
using independent software modules. 

The above two studies only discuss the addressing of service defects, because the proposed 
methods used to acquire any sent and received messages are dependent on the BPEL engine 
and middleware. In addition, SOA's request and response, synchronous communication, and 
pooling interaction models generate significant communication overhead and are not suitable 
for monitoring where rapid processing of events or exceptions is required [3, 4, 6].  

EDA delivers goods, services, and information in a way that guarantees minimal delay by 
implementing event exchange, event triggers, and real-time responses, based on various event 
situations within an integrated service-based information system architecture [9]. EDA is a 
publishing and subscribing, asynchronous communication, and push interaction model that 
has major advantages in service monitoring; short trip times, high throughput, and low 
communication load are examples of these [3, 4, 9]. In addition, the supplier provides 
information to the consumer who can subscribe or register to receive any necessary 
information first, thus enabling an early response to potential opportunities and threats [3, 4]. 
Techniques for handling events can be largely divided [6, 9] according to event handling 
methods listed below. 
 

• Primitive event processing: All events that have occurred are regarded as meaningful 
and corresponding actions are performed according to the contents of each event. The 
event processing method is provided by publishing, subscribing, or mediating. 

 

• Stream event processing: A large number of event streams are targeted in which both 
meaningful and meaningless events occur together. Only meaningful event 
information is filtered, extracted, and delivered to the application or service. 

 

• Complex event processing: The composition and meaning of events are analyzed and 
meaningful and useful information for events from various sources is provided [9]. 
While primitive event processing targets one event, complex event processing 
analyzes the various relationships between different events. 

 

McGregor proposed a solution manager service (SMS) architecture for measuring business 
process performance [10]. The proposed architecture supports web service logs and enables 
them to manage a large volume of process events in real time through a container. The 
advantage of the proposed architecture is that it integrates log data from business processes to 
identify potential quality attributes and provide comprehensive information to both suppliers 
and consumers to avoid delays in decision making. However, the event processing object is 
limited to primitive event processing for low-level events; therefore, there is a limit to how 
much useful business information can be provided to the enterprise.  



810                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

Wang pointed out that the complex event definition method, which depends only on the 
type of event, is inherently ambiguous and that the event consumption model, a partial solution 
to this, is also not flexible [11]. As an alternative complex event definition method, the event 
model of Real-Time Logic (RTL) [12], which is used mainly in the specification of real-time 
systems, is extended to define complex event definition methods and related event operators 
based on event instances. However, because only the general ECA rules are used for event 
processing with a focus on a specific domain called a network management system, there is a 
limit to the capabilities of a cause analysis through refined situation detection. 

 

3. CEP in Enterprise Systems 
In this chapter, we propose an event processing architecture and application technique for 
enterprise systems and examine the distinctive features of the proposed architecture. 

3.1 Enterprise event processing architecture 
Event processing is not a new technology, but it has been used in specific areas such as active 
databases and network management systems. It has also been used independently without a 
holistic view of enterprise systems [3]. However, event processing can play a key role in 
providing more valuable, actionable business information and responses by effectively 
analyzing events occurring inside and outside the enterprise for service monitoring. Fig. 1 
shows a block diagram of the proposed enterprise event processing application architecture. 

 
 

Fig. 1. Enterprise event processing architecture 
 

Various business activities performed by suppliers, consumers, and customers can generate 
many events through services, activities, databases, and enterprise systems. These events 
typically contain data and messages about business activity, and enterprise information 
systems, such as CRM, ERP, and MES in particular, generate a large number of events that 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  811 

correspond to the recording of activities [1]. Business process management (BPM) is an 
effective and integrated tool for business management and execution [13]. BPM perform 
business automation based on events that are generated through the execution of business unit 
activities that form logical steps within business processes [13, 14].  

The event processing agent (EPA) collects the generated events, filters the overlapping 
events, and performs preprocessing such as matching an event format. The events 
preprocessed using the EPA are routed to the event bus to apply specific rules and patterns and 
then processed and refined through the processing of the event processing engine. Complex 
events or situations detected during event processing serve as information needed for decision 
making, and the rules and patterns can be defined in advance. 

3.2 Characteristics of the proposed event processing architecture 
The core functions of the event processing architecture can be defined in three ways: 
collecting numerous events in real time, analyzing the collected events, and responding 
appropriately to the events [3, 4, 6]. The proposed enterprise event processing architecture is 
designed to apply general event processing architecture functions to service monitoring in 
enterprise systems and provides the basis for the design of the complex event processing 
model, especially the event meta-model, which is proposed in Chapter 4. The distinguishing 
characteristics of the proposed architecture are as follows.  
 

• Event collection: The EPA collects and processes various events occurring in an 
enterprise environment, which enables only the EPA to directly interact with event 
sources, improving the modularity of event sources and buses, and providing 
meaningful data through EPA's preprocessing process. You can effectively handle 
events by filtering them. In addition, the closest EPA responsible for each event 
source can collect events, increasing time efficiency. 

 

• Event analysis: Events moved to the event bus are analyzed effectively and precisely 
by applying specific rules and patterns through the event processing engine based on 
the CEP model that enables the multiple situation detections presented in this paper. 
This is discussed in detail in Chapter 4. 
 

• Response and Action: The CEP model presented in this paper can be applied to 
complex business environments, and it can proactively respond to changes by 
automating the provision of useful business information and detecting signs of 
abnormality. It also enables administrators to take appropriate actions, such as acting 
on specific functions of enterprise systems or executing specific business processes 
of BPMS, in response to detected notable situations. 

4. Design of an extended CEP Model 
This chapter describes and details the complex event model for service monitoring considering 
the event processing architecture in the enterprise system proposed in Chapter 3. First, the 
design criteria are presented to identify differences from existing studies and to lay the 
groundwork for defining an extended CEP model. Second, events and the event meta-model 
are formally defined, providing a solid foundation for event handling. Third, we propose that 
the syntax and semantics of the constructs are written using an event language, including 
patterns, event operators, rules. Fourth, we present an event context, which is one of the key 



812                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

components of the CEP model, to detect more contextual information from a collection of 
collected events. 

4.1 Event definitions 
An event can be defined as an instance that occurs at a specific point in time and can have 

significant meaning in the domain of interest [3]. An event can be represented as an event 
instance that contains the necessary information, such as the time and location of the event. 
The event type is described at the abstraction level by extracting common attributes of event 
instances.  

In this paper, we define the event type as “E” or “e” and formally define it as follows. 
 
Definition 1:  

E = (id, a, c). 
 

Each event is identified by a unique id, where “a” is the set of attributes that determine the 
characteristics of the event, a = attr1, attr2, …, attrn, and n ≥ 0. The causality vector “c” [15] 
causes the event that occurred, encompassing causally related events, c = e1, e2, …, en, and n ≥ 
0. Causality vectors facilitate causal analysis between events by deriving cause-effect 
relationships between events using causal operators. The event type is defined using the 
formal specification technique as shown in Fig. 2. 
 

The set of event types ΣE is a finite set ΣE = {E1, E2, …, En}, n ≥ 0. An event type E is a tuple 
E = (id, a, c) where id is a unique identifier (event name) such that ∀Ei, Ej ∈ ΣE, i≠j : Ei.id ≠ 
Ej.id., a = {attr1, attr2, …, attrn}, n ≥ 0 is a finite set of attributes, and c = {e1, e2, …, en }, n ≥ 0 
is a finite set of causality vector. An attribute attr is a tuple attr = (id, type) where id is a unique 
identifier (attribute name) such that ∀E ∈ ΣE, ∀attri, attrj ∈ E.attrs, i≠j : attri.id ≠ attrj.id 
and type is attribute type ∈ {number, boolean, string, dateTime}. 

 
Fig. 2. Formal specification of the event type 

 

4.2 Event meta-model 
The event meta-model is a model that defines the format required to receive events from the 
event sources such as services, activities, and databases to analyze the collected event data and 
provide useful information at the business level [16]. Events are not independent of each other, 
but are strongly related and can be represented using a formal meta-model, as shown in Fig. 3. 

The proposed event meta-model is defined based on the OASIS web services distributed 
management event format (WEF) [16] standard and can be extended and used in 
WEF-compliant event processing systems and service monitoring tools, providing a basis for 
an effective event processing and analysis. Events are categorized into composite and 
primitive events, both of which are characterized by event properties, and there is a causal 
relationship between the events. Operators combine events to form complex events or 
situations and are classified into logical, time, or causal operators. Event context is needed for 
a more delicate multi-state detection while transforming the collected low-level to high-level 
events to provide useful business information, and it includes semantic space and an 
abstraction hierarchy. Details about event context are discussed in section 4.5, respectively. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  813 

 
 

Fig. 3. Event meta-model 
 

4.3 Event processing rules 
Definition 2: Complex events can be specified as follows. 
 

Complex Event name [subof Event Names]{  

Pattern {EACH} operator (operand {(CONDITION)}, …) 

[Where { [equivalence test], parameterized predicates } {CONTEXT context}  

{WITHIN, INTERVAL, AT}] 

[Action action] 

}  
 

After the “Pattern” keyword, the event pattern is specified to begin detection. In the 
condition clause after the “Where” keyword, the condition is also specified to trigger this 
complex event. After the “Action” keyword, the name of the method for event handling is 
specified. The conditional and event handling clauses can be omitted.  

The optional items are grouped in braces “{}.” The “EACH” keyword means that all 
instances of a complex event should be reported. If you do not specify “EACH,” only the first 
composite event instance is reported. The term “CONDITION” is used to search a specific 
event instance for example, (reader = ”05AE”). The equivalence check in the conditional 
clause checks whether the values for the same attributes are identical between events, and the 
parameter condition specifies the constraints between the operands as parameters. 

The “CONTEXT” keyword is followed by context information to detect multiple more 
delicate situations. The “WITHIN,” “INTERVAL,” and “AT” keywords indicate the time 
range, interval time, and specific point time of each complex event, respectively. 
 

4.4 Definition of event operators 
Complex events differ in their expressiveness depending on the event operators provided in 
the event model [17]. The event operator proposed in this study is designed to be suitable for 



814                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

service monitoring of enterprise systems by improving and extending existing studies. 
 

• Hierarchy support operator: One of the key concepts for dealing with complex events 
is the hierarchical structure of events. The event layer support operations provided in 
this paper are as follows. When defining an event, use the “subof” operator to specify 
the event of the upper layer. In the specification of a complex event, the event's name 
automatically reacts to all events in the lower layers, including itself. If you want to 
exclude child events, you can use the operator and follow the event name with “!”. 
For example, if the complex event “CChildEvent” is declared as a sublayer of 
“CParentEvent” (that is, CChild-Event subof CParentEvent), then the 
“CParentEvent” event contains a “CChildEvent,” but the “CParentEvent!” event will 
not contain a “CChildEvent.” For example, the “EventA–EventC! or EventB” 
complex event reacts to sub events containing “EventA” or sub events containing 
“EventB” but not to “EventC.” When “EventC” is a sub-event of EventA, Fig. 4 
shows that only some of the independent event layers can be selected using the event 
layer operation. 

 
 

Fig. 4. Event hierarchy structure 
 

• Event instance reference operator: In this paper, we provide an extended model based 
on existing studies by providing an instance specification operation that can refer to a 
specific event instance. When referring to a specific event instance, the event 
instance you are creating can be referred to as “this,” and you can point to the 
previous instance of “k” by using “prev(k).” If used without parameters (ie prev), it is 
the same as “prev(1)”. In front of an event instance, you can use the “@” operator to 
obtain the timestamp of the event instance. For example, “@prev(1)” shows the 
timestamp of the last instance of the same complex event. The “R(Relative)” operator 
allows you to pick the most recent instance of events that have occurred up to that 
point in time. You can also append the “@” operator to obtain the timestamp of the 
instance. Fig. 5 shows the event occurrence history of two types of events in a system. 
For example, event e1 was detected at system times 1, 2, 3, 5, and 6, and an event 
instance is generated for each occurrence. Using the previous notation, @(e1, 1) = 1, 
@(e1, 2) = 2, @(e1, 3) = 3, @(e1, 4) = 5, and @(e1, 5) = 6. R(e2, @e1, 3) points to an 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  815 

instance of type e3 before the third, based on the timestamp of the most recent 
instance of e1. Thus @R (e2, @e1, 3) = 2. 

 
 

 
 

Fig. 5. Event Instance creation 
             

• Time constraint operator: Existing studies only consider operations at the specific 
time when an event occurred. In this study, the operator is extended so that the time 
interval can be specified. The event time can be classified into point time and interval 
time. In Fig. 6, the time t2 when the occurrence of the event e1 is completed is the 
designated time of e1, and [t1, t2] is the interval time of e1. The definition is as follows. 
When T(e) indicates the time of event e, Tb(e) indicates the start time and Te(e)  
indicates the ending time. In this study, it is assumed that there is a strong temporal 
relationship when interval times of different events are mutually independent of each 
other and that there is a weak temporal relationship when interval times of different 
events overlap. This is defined as follows. 

 
Definition 3: Strong time relationship. 

 

T(e1) < T(e2) ⇔  Te(e1) < Tb(e2)  

Definition 4: Weak time relationship. 
 

T(e1) ≺ T(e2)⇔  Tb(e1) < Tb(e2) ∧ {(Te(e1) > Te(e2)) ∨ (Te(e1) < Te(e2))} 
 

 
 

Fig. 6. Point time and Interval time 
 

4.5 Event context 
The event context mechanism is used to define additional information needed to transform the 
low-level to high-level information for a more delicate multi-situation detection. An event 
context includes elements such as abstraction hierarchy and semantic space for different 
dimensions (e.g., product and time). The semantic space is a temporary context related to 



816                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

detect situations. The Temporariness is because the semantic space is a time window 
containing several situations. The semantic space contains context information that is 
relatively independent of the event data, such as location, role, and state, as shown in Fig. 7. 
The semantic space triggers two events, initiator and terminator events, to establish the 
boundary between beginning and end. In the semantic space definition, if the conditions 
defined by “condition” of the initiator and terminator are met, the semantic space is created 
and terminated respectively. 

The abstraction hierarchy defines a range of attributes defined in the semantic space in the 
form of a hierarchical structure. The defined attributes may be objects that apply to different 
specifications such as location, organization, and product according to the nature of the 
complex event. For example, in Fig. 7, the item “Shop Floor,” defined under semantic space, 
can be layered from higher to lower levels for the location. By using the abstraction layer as 
described above, it is possible to abstract event properties while processing various events, 
thereby making it easier to classify the events. In other words, abstraction enables delicate 
event analysis by detecting events that are the root cause of the interest and the source of the 
lowest layer of the event. 

 

 
Fig. 7. Example of semantic space and abstraction hierarchy 

 
The proposed CEP model supports the specification of formalized event types and instances 

and provides various rich operators, rules, and functions to apply to and express complex 
business environments, as opposed to the existing simple ECA-based event specification and 
processing. The proposed model is designed for ease of use and provides an event meta-model, 
event context mechanisms for more delicate event analysis. 

5. Case Study 
In this section, a case study applies two scenarios, refrigerator manufacturing production and 
internet e-commerce, to show the applicability of the proposed CEP model. The scenario is 
first described, the notable situations that can occur in the scenario are then specified using the 
proposed model, and then various event types having discrete distributions for the 
corresponding events are defined and evaluated. 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  817 

5.1 Applications 
Scenario 1 
 
In the workflow to be applied, an RFID reader is installed at the main positions of each 
production line, collecting events through the manufacturing task of a refrigerator production 
factory of a consumer electronics company. Fig. 8 shows the business process of a composite 
service. The Apache ODE [18], which is an open source implementation that complies with 
the OASIS Web Services Business Process Execution Language (WS-BPEL) [5] 2.0 standard, 
is used for business process modeling. (1) to (6) represent the parts of the business process 
model (activity) in which the sequence of the workflow is mapped. (1) The refrigerator body 
and pre-applied packaging linings are prepared at the same time, and when both are ready, the 
process begins. (2) The worker assembles the body such as the bottom plate and the back plate 
of the refrigerator, and (3) the foam molding operation to produce the product by dispersing 
bubbles in the polymer resin and (4) inputting the corresponding compressor for each model. 
Assemble your refrigerator and compressor. (5) Check the items such as size, shape, and 
distribution of the cells in the foaming process and if the quality is not appropriate, the 
refrigerator returns to step (3). (6) Finally, use the prepared packing lining to pack. 

 

 
 

Fig. 8. Business process model of refrigerator production process 
  

The proposed model is applied to two aspects of operation and management for the business 
process defined above. First, it is applied to an operation, i.e., for the erroneous assembly 
between the parts and the refrigerator in the assembly process. For example, in the following, 
when assembling a refrigerator and a compressor in the “Condensation Assembly” activity, 
the types of the refrigerator and compressor are identified using a sensor, such as an RFID 
reader. If an incorrect compressor is connected and the event interval time is 10 minutes, a 
complex event is detected to inform the worker that the wrong type of compressor is being 
assembled. Event context information called “work shift,” specified after the CONTEXT 
keyword in the conditional clause, is stored in the semantic space through the location, role, 
state information, and location information defined by the hierarchical structure of the 
abstraction layer. It is generated during the production process from the reader that was used. 
That is, it is possible to pinpoint the place where the root cause is located. The event 
processing language for this purpose is defined as follows. 
 

Complex TypeCheck { 
Pattern (A=AND (REFRIGERATOR, OR  

(COMPRESSOR01, COMPRESSOR02)) ) 



818                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

Where ([compressor_type] and A == NULL  
CONTEXT work shift INTERVAL 10 min )} 

The following is a concrete example of specifying a complex event by detecting complex 
events through the collection of events generated during the manufacturing process of the 
refrigerator production line through the MES and ERP systems. The model checks whether 
refrigerator-id corresponds to events x (reader input value = “05AE”) and y, which occur 
sequentially in/out of a specific location, and it detects a complex event that terminates in 10 
minutes by referring to the parameter for the size of the weight and the event context 
information such as work shift. 
 

Complex WeightCheck { 

Pattern ( EACH SEQ (IN_FOAM_ROOM (reader=”05AE”) x, 

 OUT_FOAM_ROOM y) 

Where ( [refrigerator-id] and x.weight>y.weight CONTEXT work shift  

 WITHIN 10 min ) 

} 
 
Second, it is applied to management: work time and quality control and delivery service 

management. The following are the complex events that help analyze the work time and 
quality of every person in every station according to the accurate records of primitive events 
WORKTIME and QUALITY. 

 
Complex QualityCheck { 

Pattern ( EACH SEQ (WORKTIME, QUALITY) ) 
Where ([person_id, station]  

INTERVAL  AUGUST)} 
 

The following is an example of detecting a delivery error during a product's delivery service. 
The TRUCK event specifies that a truck, a means of delivery, is ready, and the 
EXIT-READING event is a complex event that is detected when the product or consumer 
information is incorrect after checking the contents of context.type. 
 

Complex ShipmentCheck { 

Pattern ( EACH SEQ (TRUCK,  

EXIT-READING (type != context. type )) ) 

} 
 
Scenario 2 
 
This is a scenario of internet e-commerce where a consumer finds a product in an 
internet-based e-commerce system, moves it to a shopping cart, and makes a payment. The 
following example detects an event where a consumer completes a purchase procedure in one 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  819 

minute by selecting a product, moving the selection list to the shopping cart, and making a 
payment. If this pattern is repeated for the same item, it raises a FrequentSamePurchase event. 
If these complex events occur frequently in a short period of time, it can be suspected that the 
purchase system has been abnormally busy owing to a system failure. 

Complex FrequentSamePurchase { 

Pattern ( SEQ(Find as x, MoveToCart as y, Pay, 1min) ) 

Where ( [product_id] and @this - @prev <= 1min ) 

} 

Complex FrequentSamePurchaseMoreThan5Within10min { 

Pattern ( COUNT(FrequentSamePurchase , “>=”, 5, 10min) ) 

} 
 

The following is an example in which an automatic recovery system detects a situation 
where an error occurs and generates an event in the link in the online payment process on the 
Internet e-commerce system. Among all events related to link error, the SystemAllShutDown 
event is excluded. 
 

Complex AutoRepairNotOccurWarning { 

Pattern (SEQ( (LinkDown - SystemAllShutDown ) as 

x, (LinkDown - SystemAllShutDown) as y ) ) 

Where ( [id] and @R(RepairTry, @y, 1) < @x) 

} 
In addition, the following event can be defined to add the reporting behavior to the 
administrator every 10 minutes when AutoRepairNotOccurWarning occurs. 
 

Complex InfrequentAutoRepairNotOccurWarning { 

Pattern ( AutoRepairNotOccurWarning as x ) 

Where ( @this - @prev >= 10min ) 

Action Call( Message.SendAdminWarning(x) ) 

} 
 

5.2 Evaluations 
The prototype of monitoring framework is implemented by Eclipse and PostgreSQL, which 
name is SME (service monitoring in enterprise)-CEP. Two components have been 
implemented for ease of experimentation and for enhancing the usability of the monitoring 
framework. First, the event modeler component is used to easily comprehend event models 
which include elements such as operators, rules, patterns, and context; complex event types 



820                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

are defined by combining them by using event configuration forms and by maintaining event 
models. Second, the schema transformer component makes it easy to convert the event 
definitions, specified in a complex event processing language, into XML, and to automatically 
generate them within the event model repository's database. This enables the ability to 
dynamically add, create, delete, and update the event models. Fig. 9 shows this process. 

 

 
Fig. 9. Event model maintain process  

 

Event configuration forms display a list of all the patterns, conditional expressions, and 
operators that can be retrieved from the event models; they also define complex events by 
combining the desired data, event operators, patterns, and so forth. Fig. 10 defines a complex 
event called ‘TypeCheck’ by setting and combining database tables, patterns, conditional 
expressions, operators, and any other relevant elements. More detailed information on 
monitoring framework implementation is beyond the scope of this paper; the purpose of this 
chapter is to provide an understanding of the experimental and evaluation methods. 

 

 

Fig. 10. Event configuration form 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  821 

There are 14 event types for evaluations, namely {E1, E2,…,E14}, each of which have simple 
attributes and methods to obtain their attributes. And there are also 50 complex event 
expressions. Each event type is used by at least one complex event expression that takes it as a 
component event. Such an environment for testing is set for application, as shown in section 
5.1. The event instances are generated randomly. For each input event, 10 tests are conducted, 
and its mean value is used for the analysis. To date, there is no generally accepted solutions for 
run-time monitoring of services provided by an enterprise using CEP. The similar solutions 
are Amit [19], Esper [20], etc. Amit is embedded in other commercial software products, that 
is, they are neither independent products nor available. Esper is an independent product, which 
aims at addressing the requirements of applications that analyze and react to events. And it is 
open source software. Wang’s Event Stream Suppression Model (ESSM) [11] has declarative 
language for defined complex events and supports event operators based on event instances. 
Thus, Esper and ESSM was used for performance comparison. Table 1 shows the results of 
the comparative experiments applied to the refrigerator production process using the test 
techniques and experimental scenarios. Similar to the performance measurement experiment, 
the time required, and the number of detected situations were measured by generating 10 
measurements per 100,000 events. 

 
Table 1. Evaluation results (Refrigerator production scenario) 

                                                                                                                                                                 unit: number 
Evaluation 
Item 
 

Number of  
generated events 

ESSM Esper SME-CEP 

Trip Time 
(ms) 

Detected  
situation 

Trip Time 
(ms) 

Detected  
situation 

Trip Time 
(ms) 

Detected  
situation 

100,000 900 910 913 990 1,012 10,103 

200,000 7,910 10,000 8,025 10,018 9,015 200,015 

300,000 16,020 19,910 18,090 21,110 19,031 400,101 

400,000 28,110 20,044 31,001 30,059 32,080 550,021 

500,000 39,550 39,000 45,022 51,112 50,077 700,011 

600,000 55,000 55,100 63,023 72,020 67,007 870,002 

700,000 76,120 62,000 80,011 90,105 83,025 990,011 

800,000 88,200 102,000 90,101 110,005 98,021 1,130,020 

900,000 92,890 110,003 100,012 120,082 110,003 1,250,015 

1,000,000 101,120 119,990 111,022 130,220 124,319 1,391,110 

 

In the evaluations result, the occurrence event refers to the total number of event instances 
generated through the experiment scenario, and the detected situation is the total number of 
detected complex events during the process of receiving and processing the generated event 
instance. The analysis results show that the number of detected situations increases 
significantly with the increase in the number of event instances generated using Esper and 
ESSM compared with the proposed model in this study. This shows that the proposed method 
performs much better in detecting situations for decision making. This is possible because this 



822                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

paper’s proposed method provides a wider variety of operators, rules, and functions than the 
other two methods; it also enables more refined event analysis to be performed by providing 
mechanisms such as event context. With respect to performance, it is apparent that the 
proposed method requires additional processing time over current methods, because event 
history buffer operations are frequently triggered by the detection of a greater variety of 
situations than before. Calculation of throughput using measurements of the time required 
reveals that this method detects about 11,189 notable situations per second, that Esper detects 
about 1,172 per second, and that ESSM detects about 1,186 per second. Fig. 11 shows the trip 
time and number of situations (complex events) detected using the three methods. 

 

 
 

Fig. 11. Evaluations results (Refrigerator production scenario) 
 

Table 2 shows the results of a comparative experiment applied to the Internet e-commerce 
scenario using the same test technique and experimental scenario. 

 

Table 2. Evaluation results (Internet e-commerce scenario) 
unit: number 

Evaluation 
Item 
 

Number of  
generated events 

ESSM Esper SME-CEP 

Trip Time 
(ms) 

Detected  
situation 

Trip Time 
(ms) 

Detected  
situation 

Trip Time 
(ms) 

Detected  
situation 

100,000 890 705 909 908 1,003 10,010 

200,000 15,400 1,980 17,078 10,020 19,007 210,503 

300,000 27,690 18,700 31,009 30,717 34,101 420,008 

400,000 48,900 29,010 51,720 45,250 54,307 560,077 

500,000 59,020 39,000 63,991 60,202 70,011 690,001 

600,000 67,980 45,000 79,048 70,009 85,033 800,303 

700,000 79,688 52,300 89,120 80,110 96,021 930,712 

800,000 90,033 61,000 99,031 90,012 110,030 1,030,015 

900,000 99,344 68,700 110,079 99,079 119,500 1,150,520 

1,000,000 100,769 83,400 119,260 110,910 132,345 1,282,600 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  823 

 

When analyzing the results of Table 2, the service monitoring model method proposed in 
this paper performs better in detecting notable situations for decision making than does Esper 
and ESSM. By calculating the throughput using the time required, this method detects about 
9,691 notable situations per second and Esper detects about 929 and ESSM detects about 827. 
This study shows an improved performance in complex event processing. This demonstrates 
the merits of this study in terms of the proposed model’s reliability and functionality. Fig. 12 
shows the graph of Table 2. 
 

 
 

Fig. 12. Evaluation results (Internet e-commerce scenario) 
 

6. Conclusion 
In this study, an extended CEP model is proposed to provide more valuable and useful 
business information and early response through situation detection by effectively handling 
various events occurring in a complex business environment. The way in which the proposed 
approach can be implemented in enterprise systems is put forth. The meta-model, context, 
rules, key, and operators of event processing are formulated in detail. The results of this study 
are summarized as follows. 

First, we proposed an enterprise event processing architecture to more efficiently collect, 
analyze, and respond to various events occurring in an enterprise environment, and we 
provided a basis for designing CEP models, especially an event meta-model. 

Second, defining the event type and an event meta-model that clearly specifies the syntax and 
rules for event handling and provides a solid foundation for all the elements that make up the 
proposed event model. The proposed event meta-model is defined based on the OASIS WEF 
[16] standard and can be extended to WEF-compliant event processing systems and service 
monitoring tools. 

Third, by supporting the hierarchical structure of events, the correlation between the events 
of the equal layer and the upper and/or lower layers is defined to simplify the complexity and 
facilitate the application and expression of the business environment. 



824                                         Deuk Kyu Kum : Extended CEP Model for Effective Enterprise Systems Service Monitoring 

Fourth, by providing an instance reference operator to specify not only the event type but also 
each event instance, and the operator to specify interval times in addition to specifying the 
exact timing constraints between event instances that occur. By doing this, the expression 
power of the model for the application of a complex business environment is increased.  

Fifth, by providing an event context and key mechanism that makes it possible to detect more 
contextual information independently of event data and enables more delicate event analysis. 

The application and evaluation results show that the proposed approach is effective in 
increasing the agility and responsiveness of enterprises. In the future, the rules of complex 
event pattern transformation from the business process model will be formulated and 
functionality automatically changing the related event processing rules, by analyzing the 
properties of the events generated during service execution, will be implemented. 

References 
[1] H. N. Sad and T. Noria, “A Novel Approach for Integrating Security in Business Rules Modeling 

Using Agents and an Encryption Algorithm,” Journal of Information Processing Systems, vol. 12, 
no. 4, pp. 688-710, 2016. Article (CrossRef Link). 

[2] T. Wang, S. Truptil and F. Benaben, “An automatic model-to-model mapping and transformation 
methodology to serve model-based systems engineering,” Information Systems and e-Business 
Management, vol. 15, pp. 323-376, 2017. Article (CrossRef Link). 

[3] K. M. Chandy, S. Ramo and W. R. Schulte, “What is Event Driven Architecture (EDA) and Why 
Does it Matter?,” Gartner Inc., March 2007. 

[4] K. M. Chandy, “Event-Driven Applications: Costs, Benefits and Design Approaches,” California 
Institute of Technology, November 2006. 

[5] OASIS Standard, Web Services Business Process Execution Language Version 2.0. OASIS, 11 
April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 

[6] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in Distributed 
Enterprise Systems, Addison-Wesley, 2002. 

[7] K. Lin, N. Panahi, Y. Zhang and S. Chang, “Building Accountability Middleware to Support 
Dependable SOA,” IEEE Internet Computing, vol. 13, no. 12, pp. 16-25, 2009.  
Article (CrossRef Link). 

[8] L. Baresi, S. Guinea, M. Pistore and M. Trainotti, “Dynamo + Astro: An Integrated Approach for 
BPEL Monitoring,” in Proc. of IEEE International Conference on Web Services (ICWS 2009), 
pp.230-237, 2009. Article (CrossRef Link). 

[9] D. Luckham and B. Frasca, “Complex Event Processing in Distributed System,” Stanford 
University Tech, Report CSL-TR-98-754, Mar, 1998.  

[10] C. McGregor and J. Schiefer, “A Web-Service based framework for analyzing and measuring 
business performance,” Information Systems and e-Business Management, vol. 2, no. 1, pp. 89-110, 
Springer, 2004. Article (CrossRef Link). 

[11] D. Wang et al., “Utility-maximizing event stream suppression,” in Proc. of 2013 ACM SIGMOD 
International Conference on Management of Data, pp. 589-600, June 2013.  
Article (CrossRef Link). 

[12] A. K. Mok and G. Liu, “Efficient Runtime Monitoring of Timing Constraints,” in Proc. of the 
IEEE Real-Time Technology and Applications Symposium (RTAS), 1997. 

[13] M. Hellinger and S. Fingerhut, “Business Activity Monitoring: EAI Meets Data Warehousing,” 
eAI JOURNAL, pp. 18-21, July 2002. 

[14] M. Thirumaran and G. G. Brendha, “Incremental stages of a semantic framework for automating 
the changes on long term composed services,” Human-centric Computing and Information 
Sciences, vol. 6, no. 1, pp. 1-26, 2016. Article (CrossRef Link). 

https://doi.org/10.3745/JIPS.03.0056
http://dx.doi.org/10.1007/s10257-016-0321-z
https://doi.org/10.1109/MIC.2009.28
https://doi.org/10.1109/ICWS.2009.67
http://dx.doi.org/10.1007/s10257-003-0027-x
https://doi.org/10.1145/2463676.2465305
https://doi.org/10.1186/s13673-016-0067-0


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                  825 

[15] C. G. Lee et al., “Monitoring of Timing Constraints with Confidence Threshold Requirements,” 
IEEE Transactions on Computers, vol. 56, no. 7, pp. 977-991, 2007. Article (CrossRef Link). 

[16] OASIS, Web Services Distributed Management: Management Using Web Services (MUWS 1.1) 
Part 1 and Web Services Distributed Management: Management Using Web Services (MUWS 
1.1) Part 2, 01 August 2006. http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf. 

[17] G. Liu et al., “Composite Events for Network Event Correlation,” in Proc. of the IFIP/IEEE 
Symposium on Integrated Network Management, 1999.  

[18] Apache ODE. http://ode.apache.org/index.html. 
[19] A. Asaf and E. Opher, “Amit-the situation manager,” The International Journal on Very Large 

Data Bases, vol. 13, no. 2, pp. 177-203, May 2004.  
Article (CrossRef Link). 

[20] Esper. http://www.espertech.com/. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Deuk Kyu Kum is currently a professor in Dept. of Information and Communication 
Engineering, Yuhan University, Bucheon, Korea. He received the M.S. and Ph.D. 
degrees in Computer Science and Engineering from Soongsil University, Korea, in 2005, 
2012, respectively. His research interests include big data analysis technology, internet 
and mobile computing, and cloud computing. 

  

http://dx.doi.org/10.1109/TC.2007.1026
http://ode.apache.org/index.html
https://doi.org/10.1007/s00778-003-0108-y
http://www.espertech.com/

