
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, Feb. 2020 577
Copyright ⓒ 2020 KSII

Central Control over Distributed Service
Function Path

Dan Li1*, Julong Lan1 and Yuxiang Hu1

1 Institute of Information Technology, PLA Strategic Support Force Information Engineering University
 Zhengzhou 450000 - China

[e-mail: pkulidan@foxmail.com]
*Corresponding author: Dan Li

Received January 2, 2019; revised July 10, 2019; revised August 1, 2019; accepted September 15, 2019;

published February 29, 2020

Abstract

Service Function Chaining (SFC) supports services through linking an ordered list of
functions. There may be multiple instances of the same function, which provides a challenge
to select available instances for all the functions in an SFC and generate a specific Service
Function Path (SFP). Aiming to solve the problem of SFP selection, we propose an
architecture consisting of distributed SFP algorithm and central control mechanism. Nodes
generate distributed routings based on the first function and destination node in each service
request. Controller supervises all of the distributed routing tables and modifies paths as
required. The architecture is scalable, robust and quickly reacts to failures because of
distributed routings. Besides, it enables centralized and direct control of the forwarding
behavior with the help of central control mechanism. Simulation results show that distributed
routing tables can generate efficient SFP and the average cost is acceptable. Compared with
other algorithms, our design has a good performance on average cost of paths and load
balancing, and the response delay to service requests is much lower.

Keywords: Service Function Chaining, Network Function Virtualization, function
instantiation, distributed routing, central control

This version propose an architecture consisting of distributed routing algorithm and central control mechanism to
solve the problem of service function path selection. This research was supported by The National Nature Science
Foundation of China (Grant No. 61521003), The National Natural Science Foundation of China (61702547) and
The National Key Research and Development Program of China (2017YFB0803204).

http://doi.org/10.3837/tiis.2020.02.006 ISSN : 1976-7277

578 Li et al.: Central Control over Distributed Service Function Path

1. Introduction

With the rapid development and wide use of Internet, the store-and-forward function is too
simple to satisfy the requirement of emerging applications. Network Function Virtualization
(NFV) [1], proposed in 2012, separates virtual network functions from hardware or
proprietary devices and further initiatively adapts functions to the specific application
environment. Under the paradigm of NFV, Service Function Chaining (SFC) [2] supports
services through linking an ordered list of functions (such as firewalls, proxies, Intrusion
Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs), which are used to be
realized as middleboxes [3] on virtualization platforms.

There may be multiple instances of the same function, which provides a challenge to select
available instances for all the functions in an SFC and generate a specific Service Function
Path (SFP) [4]. Most of existing works mainly target on generating SFP in a centralized
control architecture because the calculation of best SFP is too heavy for distributed nodes.
What is more, it is much easier to balance load or bandwidth in the whole network with the
help of central control. However, as the length of the service function chain increases, the
number of paths that meet the service request increases exponentially. It is also a great burden
on controller to calculate all of the best SFPs in a large network. In addition, the network
environment and physical topology have the probability of change in the actual network. If
network parameters change or nodes and links are added or deleted in the physical topology,
controller needs to consume a lot of resources and time to recalculate SFPs and forward
control messages, which restricts the scalability and robustness of network. Therefore, both
centralized and distributed algorithms have their own shortcomings, so we introduce an
architecture combining a distributed routing table generation algorithm for SFP and a central
control mechanism to combine the advantages of distributed and centralized algorithms.

In this paper, we study the problem of SFP selection, and introduce an architecture
combining a distributed routing table generation algorithm for SFP and a central control
mechanism, called as Central-Distributed Service Function Path (CDSFP). There are two
routing tables in each node, distributed and centralized routing tables. Distributed SFP
algorithm is just like traditional link-state protocols such as OSPF [5] and IS-IS [6], where
nodes compute shortest paths over a synchronized view of network topology. However, to
support SFP selection in the proposed algorithm, not only destination nodes but also the first
functions in service requests are in distributed routing tables. Controller supervises all of the
distributed routing tables. If there is a path needing modification, controller calculates best
SFP and sends centralized routing messages to nodes on the path as required. Centralized
routing tables have a higher priority than distributed routing tables, so that the distributed path
can be modified. CDSFP is scalable, robust and quickly reacts to failures because of
distributed routings, and enables centralized and direct control of the forwarding behavior with
the help of central control mechanism.

In summary, we make the major contributions in this paper as follows:
1) A distributed path can connect function instances and destination node in sequence, so

it must be an effective path corresponding to the service request. To the best of our
knowledge, this work is the first effort that uses distributed routing tables to solve the
problem of SFP selection.

2) In most networks, best SFP is not necessary if the cost of path is acceptable and other
service requirements can be satisfied. By setting reasonable parameters in the proposed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 579

distributed algorithm, the average cost of paths is just a little higher than best SFP,
which can satisfy the requirements of most services.

3) Central control mechanism can reduce the average cost of SFPs, and consider many
restrictive conditions synthetically, such as bandwidth limitations of links and load
balancing of the whole network.

The rest of this paper is organized as follows. Related works are given in Section 2. Section
3 formulates SFP selection problem and introduces our proposed architecture. In Section 4 we
describe distributed SFP algorithm and analyze its performance. Section 5 gives a central
control mechanism to modify distributed paths. In Section 6 simulation results of the proposed
central-distributed approach are presented and we compare its performance with other existing
solutions. Finally, this paper is summarized in Section 7.

2. Related Work
There is already some works on SFC so far and most researches aim to design algorithms in a
centralized control architecture. Authors in [7] consider link delays and computational delays
and set up the problem of deploying service function chains over network function virtualized
architecture as an integer linear programming optimization problem, along with important
constraints such as total deployment costs and service level agreements. Ref [8] proposes a
unified control and optimization framework that combines SFC and SDN. By modeling the
network and services together and developing optimization techniques, this framework
benefits the overall system performance in various scenarios. In [9], authors develop an
approach that uses three algorithms in VNF placement, SFC routing, and VNF migration in
response to changing workload. The objective is to minimize the rejection of SFC bandwidth
and consolidate VNFs in as few servers as possible so as to reduce the energy consumed. Ref
[10] studies how to optimize SFC deployment and readjustment in the dynamic situation. It
tries to jointly optimize the deployment of new users' SFCs and the readjustment of in-service
users' SFCs while considering the trade-off between resource consumption and operational
overhead. Segment routing is used for optimal link mapping in [11] and [12] to promote
request acceptance ratio and resources utilization ratio. In [13], authors study the joint problem
of service function chain deploying and path selection for bandwidth saving and VNF reuse.
They describe the problem as a multi-objective and multi-restriction problem, and propose a
heuristic service function chain deployment algorithm. The placement aspect of SFC is
addressed both in [14] and [15] by finding the best locations and hosts for the functions while
respecting user requirements and maximizing provider revenue. Ref [16] illustrates a dynamic
service function composition model which optimizes cost, load and other QoS metrics
simultaneously and proposes a polymorphic derivation algorithm based on Markov
approximation to obtain an optimal solution. Authors in [17] propose a novel resource
allocation architecture which enables energy-aware SFC for SDN-based networks,
considering also constraints on delay, link utilization, server utilization. They formulate the
problems as integer linear programming optimization problems and design a set of heuristic to
find near-optimal solutions in timescales suitable for practical applications.

There are some distributed algorithms that can optimize delay, expense or some other QoS
metrics. An adaptive triggering policy based on link-usage statistics, is proposed in [18] in
order to reduce the volume of link state update traffic without deterioration of QoS. The
algorithms in [19] and [20] define their cost function of links which is a weighted sum of
response time, cost, reliability and availability and generate best paths based on the shortest
path algorithm. Central control is introduced in [21] and [22] to modify distributed paths

580 Li et al.: Central Control over Distributed Service Function Path

generated according to OSPF to regulate the bandwidth, load or other QoS metrics. However,
distributed paths generated in the above algorithms cannot correspond to SFCs because data
packets are forwarded only according to destination nodes in routing tables. SpiderNet in [23]
is a P2P service composition framework that can simultaneously guarantee QoS and load
balancing in distributed environment. Authors in [24] propose an algorithm for QoS assurance
and load balancing (QALB) on the basis of SpiderNet by changing the weights of cost function
dynamically. In [23] and [24], the service requests and responses are generated in distributed
nodes, but the selection of path is made centrally by sink node.

3. Problem Description
The symbols with their definitions used in this paper are shown in Table 1. We model a
network as an edge-weighted graph (),G V E= in which V and E means the set of nodes and
links, and ec is the cost of each link e E∈ . In this paper, the cost of link can be defined as delay,
energy, expense or some other parameters needing to be reduced. There are some kinds of
functions. Each function iF may have a set of instances { }1 2, ,..., iM

i i iF F F deployed on different
nodes, where iM is the number of instances.

Table 1. List of symbols used in this paper
Notation Description
V The set of nodes
E The set of links

ec The cost of link e

vL The maximum available load of node v

eB The maximum available bandwidth of link e
F The set of functions
n The number of types of functions

ij
iF The ij th instance of function iF

k The length of SFC
()C P The cost of path P

iP The SFP selected for the ith service request

il The required load for the ith service request

vl The present load of node v

ib The required bandwidth for the ith service request
AD Paths from A to D

1... kAF F D Paths connecting the instances of k functions sequentially from A to D
d The upper bound of the cost of the shortest paths between any nodes
h The number of nodes
p The number of instances

1h The average number of hops of the shortest paths between any nodes
()f k The expectation of () () ()1 2 1min ... min mink k kC F F C F F C F D−+ + +

α The weight in the cost function with service

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 581

1β The parameter to set a threshold about cost of paths

2β The parameter to set a threshold about load balancing

Let R be a service request, { }1 2, , ,..., ,kR A F F F D= , in which k is the number of required

functions, A is source node, D is destination node, and{ }1 2, ,..., kF F F is SFC meaning the
logical ordered list of functions in a service request. We assume that the functions in each SFC
are different from each other, and different service requests can share the same instance. The
SFP selection problem is to select one instance for each function in R , composing a service
response { }1 2

1 2, ,..., kjj j
kF F F

to satisfy R , where ij

iF means the ij th instance of iF .

F1
1 F2

2 F3
4 F4

1

F4
3F1

3 F3
2F2

1

F1 F2 F3 F4 D

F1
1 F1

2

F1
3

F2
1

F2
2

F3
1

F3
3

F4
1 F4

2

F4
3

F3
2

F3
4

A

D
A

Fig. 1. An example of SFP selection problem

Fig. 1 is an example of SFP selection problem. When source node receives a service
request { }1 2 3 4, , , , ,R A F F F F D= ，the red solid path { }1 2 4 1

1 2 3 4, , ,F F F F and the blue dashed path

{ }3 1 2 3
1 2 3 4, , ,F F F F both can satisfy the service request. There may be any service request at any

time with no prior information. The fundamental objective of SFP selection is to find a path
which has low cost and satisfies the constraint condition simultaneously whenever a service
request appears. Given a set of service requests, this objective can be mathematically
described as:

 ()Minimize i

i
C P∑ (1)

Subject to:
 ,

p i

i v p
v P

l L v V
∈

≤ ∀ ∈∑ (2)

() ()

()
, ,

, ,
p q i q p i

i i e p q
v v p v v p

b b B v v E
∈ ∈

+ ≤ ∀ ∈∑ ∑ (3)

Eq. (1) means to minimize the cost of paths. Eqs. (2) and (3) are load and bandwidth
constraint conditions. To find a feasible solution which can approach the objective, we
propose an architecture combining a distributed routing table generation algorithm for SFP
selection and a central control mechanism.

582 Li et al.: Central Control over Distributed Service Function Path

4. Distributed SFP Selection Algorithm

4.1 Structure of Routing Tables
In traditional link-state protocols, there are only destination nodes in routing tables.

However, in the problem of SFP selection, both functions and destination nodes in service
requests should be considered. The problem is that if all of the possible service requests are put
into routing tables, the number of routings will increases dramatically with the number of
functions in network. As a result, the complexity to generate and maintain routing tables is
extremely high, and the routing convergence time is too long to make sure there is no routing
loop or data loss. Based on the above analysis, we just put destination node and the first
function in a service request into a distributed routing. Once some node provides the first
function, it is removed from the service request and replaced by the next function. Each node
only needs to decide whether to provide the first function in the immediate request without
considering previous functions. For example, if node B receives { }1 2 3 4, , , , ,R A F F F F D= and
provides the first function 1F , the request becomes { }2 3 4, , , ,R A F F F D= and the first function
becomes 2F . In this way, a distributed path can connect function instances and destination
node in sequence, so it must be an effective path corresponding to the service request.

Consider a network with seven nodes shown in Fig. 2, where solid lines connect neighbors.
B and E can provide function 1F while C and D can provide function 2F . Part of the routing
table of A expressed beside A in Fig. 2 is shown in Table 2, where the first function is shown
as 0 when there is no functions in service requests. The routing tables of B and C are also
shown in the figure. No matter how many functions there are in a service quest, the nodes just
make decisions according to the first function and destination node.

A B

D G

H

CE

F1
1 F2

1

F2
2

F1
2

F1 H -> B
F2 H -> C
0 H -> B

F1 H -> B
F2 H -> C
0 H -> H

F1 H -> B
F2 H -> C
0 H -> H

Fig. 2. Example of distributed routing tables

Table 2. Part of distributed routing table of A

First function Destination node Next hop
F1 H B
F2 H C

0 (without service) H B

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 583

4.2 Cost Function
The core of distributed SFP algorithm is cost function, based on which the cost of paths is
calculated and compared through different neighbor nodes. Because both functions and
destination nodes are considered in the proposed algorithm, we divide paths into two
categories, (1) paths with service and (2) paths without service. The cost of paths without
service is as same as the shortest path algorithm. The cost of the shortest path from A to D
without service is defined as min ()C AD .

Considering a service request { }1 2, , ,..., ,kA F F F D , the cost of the shortest SFP can be
accurately expressed as
 () () () ()1 1 1 2 1(...) min min ... min mink k k kC AF F D C AF C F F C F F C F D−= + + + + (4)

In the proposed distributed SFP algorithm, there is only the first function in a routing, so it is
usually not possible to calculate and compare the cost by (4). Therefore, we have to compare
the cost of paths with service by ()1min C AF and ()1min C F D . Because ()1min C AF is an
addend in (4), we need to analyse the relationship between ()1min C F D and

() () ()1 2 1min ... min mink k kC F F C F F C F D−+ + + , which is related to the length of SFC.
Firstly, we consider the situation that there are just two functions, 1F and 2F . Without loss of

generality, assuming that the cost of the shortest path between any two nodes is not more than
d ，we can get,
 () ()1 2 20 min , minC F F C F D d≤ ≤ (5)

According to the properties of inequality and triangle, the relationship can be obtained as
follows based on (5)
 () () ()1 1 2 2min min min 2C F D C F F C F D d≤ + ≤ (6)

The relationship between () ()1 2 2min min+C F F C F D and ()1min C F D is according to the
position of instances of 2F . Obviously, if at least one node on the path of ()1min C F D can
provide 2F , the minimum of () ()1 2 2min min+C F F C F D is equal to ()1min C F D . Let p be the
number of instances of function 2F , h be the number of all the nodes, and 1h be the number of
hops of ()1min C F D . The probability that there is at least one instance of 2F on the path of

()1min C F D is ()11 ph h h− − , which is shown in (7).

 () ()() ()() 1
1 2 2 1min min min min 1

ph hP C F F C F D C F D
h
− + = = −  

 
 (7)

On the contrary, if none of the instances are on the path of ()1min C F D ,
() ()1 2 2min min+C F F C F D is scattered randomly between ()1min C F D and 2d . Assuming that

the instances are evenly distributed in a two-dimensional plane, we can estimate the minimum
of () ()1 2 2min min+C F F C F D in (8), which happens with probability ()1

ph h h−

 () ()() () ()1 1
1 2 2 1

2 min
min min min min

1

pd C F D h hP C F F C F D C F D
hp

  − −  + = + =     +    
 (8)

584 Li et al.: Central Control over Distributed Service Function Path

Combining (7) and (8), () ()()1 2 2min min minC F F C F D+ is in accord with the Bernoulli

distribution. Therefore, the expectation of () ()()1 2 2min min minC F F C F D+ , which is

represented as ()2f , can be calculated as

() () () ()

()

11 1
1 1

1 1
1

2 min
2 1 min min

1

2 11 min
1 1

p p

p p

d C F Dh h h hf C F D C F D
h h p

h h h hd C F D
h hp p

   −− −   = − + +          +      
  − −   = + −        + +      

 (9)

To make following analysis easier, we rewrite ()2f as (10). Which means inserting 2F into
()1f

() ()

() ()1 1
1

2 1

2 1where , 1 , 1 min
1 1

p p

f a b f

h h h hda b f C F D
h hp p

= + ×

  − −   = = − =        + +      

 (10)

Secondly, we incrementally increase the length of SFC. We use ()3f to represent

() () ()()1 2 2 3 3min min min min+ +C F F C F F C F D which means inserting 3F into ()2f , so

that ()3f can be deduced as
 ()(3) 2f a bf= + (11)

By analogy, we can obtain the recursion formula of ()f k , which means the expectation of
() () ()1 2 1min ... min mink k kC F F C F F C F D−+ + + .

 () ()1f k a bf k= + − (12)

Substituting () ()1 1 min=f C F D into (12), we can express ()f k as

 () () ()
2

2 1 1
1 1

0
... min min

k
k k i k

i
f k a ab ab b C F D ab b C F D

−
− − −

=

= + + + + = +∑ (13)

Finally, substituting (13) into (4), we have

 () () () ()
2

1
1 1 1 1

0
(...) min min min

k
k i

k
i

C AF F D C AF f n C AF b C F D ab
−

−

=

= + = + +∑ (14)

The third addend is a constant which has no effect on the comparison of cost, so we compare
the cost of paths with service by () ()1 1min minC AF C F Dα+ , where

1

1 1 11
1

np
k h hb

h p
α

−

−
 − = = −   +  

 (15)

In a stabilizing network, parameters such as h , 1h and p are almost invariable. The
parameter k should be the average length of SFCs in the network, by which the
weightα can be calculated exactly to reduce the average cost in the network.

4.3 Routing Update
A node cannot generate its routing table by itself, so we should make the strategy to share

and update routings between neighbor nodes. Each node should share its routings to neighbor
nodes periodically and update its routing table as soon as receiving routing messages. Like the
cost of paths, routing messages also can be divided into two categories, (1) routings without

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 585

service and (2) routings with service. Some routing messages shared by A are shown in Table
3, in which ()0C A H has no function, and the others have 1F or 2F as the first function.

Table 3. Some routing messages A shares

First function Destination node Routing message
F1 H ()1C AF H

F2 H ()2C AF H

0 (without service) H ()0C A H

Once a node receives a routing message with service, it adds the cost between it and the

neighbor node to the cost in routing message, and compares the result with other paths
containing the same function and destination node. The first two lines of Table 4 illustrate the
update when E receives routing messages with service from A.

Once a node receives a routing message without service, it adds the cost between it and the
neighbor node to the cost in routing message, and compares the result with other paths without
service, as shown in line 3 of Table 4. What is more, if the node can provide some function iF ,
it adds the cost between it and the neighbor node to the cost in routing message, multiplies the
sum byα , and compares the result with other paths containing iF . In the last line of Table 3
we can see that, because E can provide 1F , a new routing with 1F needs to be added when a
routing message without service ()0C A H is received.

Table 4. Routing update when E receives routing messages.

Routing message First service Destination node Routing cost
()1C AF H F1 H () ()1C AE C AF H+

()2C AF H F2 H () ()2C AE C AF H+

()0C A H
0 (without service)

F1

H

H

() ()0C AE C A H+

() ()()0C AE C A Hα +

Algorithm 1 is designed as the pseudo-code of routing update. After routing update and

comparison of costs, nodes should put routings with the lowest cost into their routing tables.

Algorithm 1: Routing update (for example, E receives routing messages from A)
1． for each routing message from A arrived
2． set Ac = cost in routing message
3． set AEc = cost between A and E
4． if there is no service in the message
5． Ec without service = min(A AEc c+ , Ec without service)
6． if this node can offer function iF
7． Ec with iF = min(()A AEc cα + , Ec with iF)
8． else // there is function iF in the message
9． Ec with iF = min(A AEc c+ , Ec with iF)
10． end if

586 Li et al.: Central Control over Distributed Service Function Path

11． if Ec has been changed
12． send Ec to other neighbor nodes and controller
13． end if
14． end for

Convergence time is an important indicator of distributed routing update, which means the

time from detection of changes in network to the end of routing update. To analyze
convergence time, we refer to the shortest path algorithm of OSPF. Considering a network
with h nodes and n functions, the convergence time of OSPF is proportional to the size of
routing table (()OSPFT O h=) [25]. In our proposed algorithm, according to Table 1, the
distributed routing table consists of a OSPF routing table without service and n OSPF routing
tables with service, which means ()1n h+ routings in each table. so the convergence time is
only ()()1DSFPT O n h= + . Because n is usually a single digit, DSFPT can satisfy the
communication requirement in many networks.
4.4 Routing Lookup

After the generation and update of routing tables, nodes can forward or process data
according to service requests, as shown in Algorithm 2. When a data packet arrives, the node
gets the first function and destination node (line 2-3), and finds the next hop in its routing table
(line 7). If the next hop is still this node, it provides the first function, deletes the first function
from service request, and restarts routing lookup (line 8-12). If the next hop is another node, it
sends the data packet to the next hop (line 13). The data packet is processed and forwarded
again and again until it is received by destination node and SFC is empty, which means SFP
ends (line 4-6).

Algorithm 2: Routing lookup
1． for each data packet arrived
2． set F = the first function in service request
3． set D = destination node
4． if F is null and D is this node // termination conditions of SFP
5． keep the data
6． else
7． N = lookup(F,D) in routing table
8． if N is this node
9． this node provide function F
10． delete F from service request
11． goto (2)
12． else // the next hop is another node

13． send data packet to N
14． end if
15． end if
16． end for

Fig. 3 illustrates the forwarding process after A receives a service request { }1 2, , ,A F F H in

the network of Fig. 2. A looks up the next hop in its routing table according to ()1,F H and
forwards data packet to B. B looks up the next hop in its routing table according to ()1,F H ,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 587

provides function 1F , and delete 1F in the service request so that the service request becomes
{ }2, ,A F H . Then B looks up the next hop in its routing table again according to ()2 ,F H and
forwards data packet to C. C looks up the next hop in its routing table according to ()2 ,F H ,
provides function 2F , and delete 2F in the service request so that the service request becomes
{ },A H . Then C looks up the next hop in its routing table again according to ()0, H and
forwards data packet to H. Finally, the data packet is forwarded to H with no function needed,
putting an end to this forwarding process. What need to be stressed is that B and C have to
lookup routing tables twice because they provide function 1F and 2F respectively.

A B

D G

H

CE

F1 H -> B
F1 H ->B
F2 H ->C

F2 H -> C
0 H -> H

{ }1 2, , ,A F F H

{ }1 2, , ,A F F H

{ }2, ,A F H

{ },A H

F1
1 F2

1

F2
2

F1
2

Fig. 3. Generation of distributed SFP when A receives a service request{ }1 2, ,F F H

5. Central Control Mechanism

5.1 Strategy of Central Control
Nodes generate and update distributed routing tables, by which data can be processed and
forwarded independently. However, the algorithm will not give a global optimal solution, so
the cost of some routings may be very high. In addition, some routings need modification
because of some restrictive condition. Therefore, we design a central control mechanism to
solve the problem. To explain our algorithm clearly, in the remainder of this paper, the balance
of service load, which means the number of functions provided by each node, is considered as
an example of restrictive condition

Central control is realized by controller, which obtains network topology information and
service load of nodes in real time. Controller also monitors the distributed routing table of each
node and decides whether a distributed SFP needs modification. If so, controller calculates
best SFP according to network topology and service load, and sends routing messages to nodes
to change their next hops. Nodes receive and put the messages into their centralized routing
tables which should be checked firstly. If there is a centralized routing corresponding to the
service request, the node processes data according to it, or the node will find next hop in its
distributed routing table. The difference between centralized and distributed routings is that
only the first function is in a distributed routing, but the whole SFC is in a centralized routing,
so that a centralized routing just changes one SFP and does not influence other paths.

588 Li et al.: Central Control over Distributed Service Function Path

If centralized routing 1 2F F H E→ is send to A, new forwarding processes are illustrated in
Fig. 4. The service request { }1 2, , ,A F F H is the same in Fig. 3, but the next hop of A is changed
from B to E. What is more, E and C do not need central control because their distributed
routings do not need modification. If their next hops generated by distributed routings are not
on the new path, controller also needs to send routing messages to them.

A B

D G

H

CE

Distributed SFP
Central SFP
Control messages

F1F2 H -> E

F1 H ->E
F2 H ->C F2 H ->C

0 H ->H

F1 H -> B

{ }1 2, , ,A F F H

{ }1 2, , ,A F F H

{ }2, ,A F H

{ },A H

F2
2

F1
2

F1
1 F2

1

Fig. 4. Generation of SFP with central control when A receives a service request { }1 2, ,F F H

5.2 Trigger condition of Central Control
To decide whether a distributed SFP needs modification, controller needs to consider two
factors. The first one is that whether the cost of that path is high, so it is necessary to design a
method to obtain the cost of distributed paths and best paths. Controller monitors the
distributed routing table of each node, so it can obtain the distributed SFP and calculates the
cost once a service request appears. However, the calculation of best SFP for each service
request will take much time. Therefore, we propose another way to estimate the cost of best
SFP.

During the analysis of cost function in section 4.2, we already obtain the relationship
between ()1min C F D and () () ()1 2 1min ... min mink k kC F F C F F C F D−+ + + , shown as (13). Based
on that, it is easy to deduce the estimation of minimum cost from A to D with k functions,
which can be expressed as (16). Distributed path needs to be changed if its cost is higher
than 1β times the cost of best SFP.

() ()

() ()

1 1 1

1

1
0

1 1

... ...

... min

4 1where , 1
1 1

distributed k best k

k
i k

best k
i

p p

C AF F D C AF F D

C AF F D ab b C AD

h h h hda b
h hp p

β
−

=

≤

= +

  − −   = = −        + +      

∑ (16)

The second factor is that whether the balance of service load is satisfied. Because the
objective of load balancing is to minimize the maximum of load in the network, we set a
threshold about load balancing for each distributed SFP in (17), which means the maximum of
load must be lower than 2β times the average load. In addition, the value of 1β and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 589

2β influences the effect of load balancing and the proportion of central control.

 () 2max
v

v
v

l
l

h
β≤
∑

 (17)

5.3 Calculation of Best SFP
In the proposed architecture, controller does not need to work all the time, so we do not care

a lot about the cost and delay of calculation. Therefore, we choose an exhaustive method with
the highest calculation accuracy. Controller just traverses all the paths corresponding to the
service request, sorts them by their cost, and choose a path that has the lowest cost and satisfies
the balance of service load. The pseudo-code of exhaustive method is shown in Algorithm 3.

Algorithm 3: Exhaustive method
1． for each service request arrived
2． set A = source node
3． set D = destination node
4． set S = SFC
5． set P = the set of paths which connect function instances of S in sequence from A to D
6． sort P by the cost of paths
7． set sp the shortest path in P
8． if sp does not satisfy the balance of service load
9． delete sp from P
10． go to (7)
11． end if
12． send routing messages to nodes along sp as required
13． end for

6. Experimental Classification Results and Analysis

6.1 Simulation Design
To evaluate the performance of the proposed central-distributed architecture, we design
simulation scenarios in a network topology with 20 nodes that is generated randomly using
Waxman-Salama model [26]. There are 5 types of functions which can be used to combine
SFCs and 5 instances randomly deployed for each function in the network. Each SFC is
constructed by randomly selecting functions and the length of SFC can change from 1 to 5.
The source and destination of each service request are also selected randomly from all of the
nodes in the network. To reduce the uncertainty of simulation, we implement 100 simulations
by Monte Carlo method in each scenario and choose the average value as the simulation result.

6.2 Performance of Distributed SFP Algorithm
Firstly, we evaluate the performance of distributed SFP algorithm in the simulation scenarios
above. Average cost of path is the most important performance metric of distributed algorithm.
To verify whether the calculation of α is appropriate, we simulate the average cost of
distributed SFP with different α in the first place. Optimal α in simulations and α calculated
by (15) with different SFC length are shown in Table 5, in which we can see that the
calculation of α agrees well with simulation results.

590 Li et al.: Central Control over Distributed Service Function Path

Table 5. Calculated weights and Optimal weights

SFC length Calculated α Optimal α
1 1 1
2 0.82 0.80
3 0.67 0.65
4 0.55 0.55
5 0.45 0.45

The distribution graphs of the ration of path cost to best SFP and the ration of node load to

average load in 100 simulations is shown in Fig. 5 and Fig. 6. We can see that the cost of
about 90% distributed paths are less than 1.4 times the cost of best SFPs. Therefore, if we set

1 1.4β = , we can make sure that the cost of all the paths can be acceptable. The distribution of
load also needs to be balanced because the load of nearly 10% nodes are more than 1.5 times
the average load, which should be avoided by setting 2 1.5β =

Fig. 5. Distribution graph of the ration of path cost to best SFP

Fig. 6. Distribution graph of the ration of node load to average load

6.3 Performance of Central Control Mechanism
In this section, we compare the performance of our design (CDSFP) with other existing
algorithms in distributed environment, SpiderNet in [23] and QALB in [24]. Exhaustive
method is also simulated to show the performance of best paths. We set 1 1.4β = and 2 1.5β = ,
so that the proportion of central control is about 20% (1-(1-90%)(1-90%)).

Before the comparison, we firstly validate our method to estimate the cost of best SFP in
(16), because it is important to decide whether a distributed SFP needs modification in our

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 591

design. The cost of best SFP and our estimation result are represented in Fig. 7. The estimation
result is a little more or less than actual cost, which means that our estimation method is
reasonable for cost judgment of distributed paths.

Fig. 7. Average cost of best SFP and estimation result

The maximum load in the network and the average cost of SFP are shown in Fig. 8 and Fig.

9 respectively. Because only 10% paths are modified by controller for load balancing, the
maximum of load of CDSFP is a little higher than the other three algorithms, but the gap
between CDSFP and SpiderNet is very small. However, the average cost of our proposed
method is only about 10% higher than best paths given by Exhaustive method, and evidently
lower than QALB and SpiderNet.

Fig. 8. The maximum load in the network using CDSFP and other three existing method

Fig. 9. Average cost of SFP using CDSFP and other three existing method

592 Li et al.: Central Control over Distributed Service Function Path

Fig. 10 shows the results on average response delay to each service request. Exhaustive

method needs the longest time to calculate best paths. QALB and SpiderNet also spend much
longer time than CDSFP to exchange request and response messages about each service
request between nodes. In our design, distributed SFP is generated according to routing tables
as soon as a service request appears, so that the response delay is mainly decided by the
proportion of central control. When the proportion of central control is about 20%, the
calculation time is at least 50% lower than other solutions.

Fig. 10. Average response delay to each service request using CDSFP and other three existing

method

7. Conclusion
The generation of SFP is one of the difficult problems in NFV. It is not easy to calculate the
best SFP in a large network. In this paper, we propose an architecture combining distributed
SFP algorithm and central control mechanism to select available instances for SFC. Nodes
generate distributed routing tables and build effective paths for service requests. Controller
calculates best SFP and modifies some paths by sending centralized routings, which have a
higher priority. Simulation results reveal that the architecture shows a suboptimal result in the
average cost .Compared with other centralized algorithms, our architecture is more scalable
and robust because of distributed routings, and the average response delay to service requests
is much lower. We believe that new researches can further explore this direction such as the
optimization of routing tables, the method to modify paths by controller and so on.

References
[1] R Mijumbi, J Serrat, J L Gorricho, N Bouten, F De Turck and R Boutaba, “Network function

virtualization: State-of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236-262, Firstquarter 2016. Article (CrossRef Link)

[2] P Quinn and J Guichard, “Service function chaining: Creating a service plane via network service
headers,” Computer, vol. 47, no. 11, pp. 38-44, November, 2014. Article (CrossRef Link)

[3] X Yuan, D Huayi and W Cong, “Assuring string pattern matching in outsourced middleboxes,”
IEEE/ACM Transactions on Networking (TON), vol. 26, no.3, pp. 1362-1375, June, 2018.
Article (CrossRef Link)

[4] A M Medhat, T Taleb, A Elmangoush, G A Carella, S Covaci and T Magedanz, “Service function
chaining in next generation networks: State of the art and research challenges,” IEEE

https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/MC.2014.328
https://doi.org/10.1109/TNET.2018.2822837

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 593

Communications Magazine, vol. 55, no. 2, pp. 216-223, February, 2017. Article (CrossRef Link)
[5] G Apostolopoulos, R Guerin, and S Kamat, “Implementation and performance measurements of

QoS routing extensions to OSPF,” in Proc. of Infocom 99 Eighteenth Joint Conference of the IEEE
Computer & Communications Societies, pp. 680-688, March21-25, 1999. Article (CrossRef Link)

[6] B Fortz and M Thorup, “Optimizing OSPF/IS-IS weights in a changing world,” IEEE journal on
selected areas in communications, vol. 20, no. 4, pp. 756-767, May, 2002. Article (CrossRef Link)

[7] D Bhamare, M Samaka, A Erbad, R Jain, L Gupta and, H A Chan, “Optimal virtual network
function placement in multi-cloud service function chaining architecture,” Computer
Communications, vol. 102, pp. 1-16, April, 2017. Article (CrossRef Link)

[8] Y Li, F Zheng, M Chen and D Jin, “A unified control and optimization framework for dynamical
service chaining in software-defined NFV system,” IEEE Wireless Communications, vol. 22, no. 6,
pp. 15-23, December, 2015. Article (CrossRef Link)

[9] V Eramo, E Miucci, M Ammar and F G Lavacca, “An approach for service function chain routing
and virtual function network instance migration in network function virtualization architectures,”
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2008-2025, August, 2017.
Article (CrossRef Link)

[10] J Liu, W Lu, F Zhou, P Lu and Z Zhu, “On dynamic service function chain deployment and
readjustment,” IEEE Transactions on Network and Service Management, vol. 14, no. 3, pp.
543-553, September 2017. Article (CrossRef Link)

[11] G Xiong, P Sun, Y Hu, J Lan and K Li, “An Optimized Deployment Mechanism for Virtual
Middleboxes in NFV-and SDN-Enabling Network,” TIIS, vol. 10, no. 8, pp. 3474-3497, August,
2016. Article (CrossRef Link)

[12] G Xiong, Y Hu, J Lan and G Cheng, “A Mechanism for Configurable Network Service Chaining
and Its Implementation,” TIIS, vol. 10, no. 8, pp. 3701-3727, 2016. Article (CrossRef Link)

[13] D Li, J Lan and P Wang, “Joint service function chain deploying and path selection for bandwidth
saving and VNF reuse,” International Journal of Communication Systems, vol. 31, no. 6, pp,
e3523, April 2018. Article (CrossRef Link)

[14] L Wang, Z Lu, X Wen, R Knopp, R Gupta, “Joint Optimization of Service Function Chaining and
Resource Allocation in Network Function Virtualization,” IEEE Access, vol. 4, pp. 8084-8094,
November 2016. Article (CrossRef Link)

[15] M Mechtri, C Ghribi, D Zeghlache, “A scalable algorithm for the placement of service function
chains,” IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 533-546,
September, 2016. Article (CrossRef Link)

[16] P Wang, J Lan, X Zhang, Y Hu and S Chen, “Dynamic function composition for network service
chain: model and optimization,” Computer Networks, vol. 92, pp. 408-418, December, 2015.
Article (CrossRef Link)

[17] M M Tajiki, S Salsano, L Chiaraviglio, M Shojafar and B Akbari, “Joint energy efficient and
QoS-aware path allocation and VNF placement for service function chaining,” IEEE Transactions
on Network and Service Management, vol. 16, no. 1, pp. 374-388, March, 2018.
Article (CrossRef Link)

[18] M Yang, T Kim, H Jung, MH Jung and SH Choi, “Performance analysis of an adaptive link status
update scheme based on link-usage statistics for QoS routing,” ETRI journal, vol. 28, no. 6, pp.
815-818, December, 2006. Article (CrossRef Link)

[19] K H Cho, “Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS
Routing,” Journal of the Korea Society of Computer and Information, vol. 21, no. 4, pp. 17-24,
April, 2016. Article (CrossRef Link)

[20] K H Cho, “ Hybrid Link State Update Algorithm in QoS Routing,” Journal of the Korea Society of
Computer and Information, vol. 19, no. 3, pp. 55-62, March, 2014. Article (CrossRef Link)

[21] S Vissicchio, O Tilmans and L Vanbever, “Central control over distributed routing,” ACM
SIGCOMM Computer Communication Review, pp.43-56, 2015. Article (CrossRef Link)

[22] M Caria, A Jukan and M Hoffmann, “SDN partitioning: A centralized control plane for distributed
routing protocols,” IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp.
381-393, September, 2016. Article (CrossRef Link)

https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1109/INFCOM.1999.751454
https://doi.org/10.1109/JSAC.2002.1003042
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1109/MWC.2015.7368820
https://doi.org/10.1109/TNET.2017.2668470
https://doi.org/10.1109/TNSM.2017.2711610
https://doi.org/10.3837/tiis.2016.08.003
https://doi.org/10.3837/tiis.2016.08.016
https://doi.org/10.1002/dac.3523
https://doi.org/10.1109/access.2016.2629278https:/doi.org/10.1109/access.2016.2629278
https://doi.org/10.1109/TNSM.2016.2598068
https://doi.org/10.1016/j.comnet.2015.07.020
https://doi.org/10.1109/TNSM.2018.2873225
https://doi.org/10.4218/etrij.06.0206.0106
https://doi.org/10.9708/jksci.2016.21.4.017
https://doi.org/10.9708/jksci.2014.19.3.055
https://doi.org/10.1145/2785956.2787497
https://doi.org/10.1109/TNSM.2016.2585759

594 Li et al.: Central Control over Distributed Service Function Path

[23] X Gu, K Nahrstedt and B Yu, “SpiderNet: An integrated peer-to-peer service composition
framework,” in Proc. of 13th IEEE International Symposium on High performance Distributed
Computing, pp. 110-119, June 4-6, 2004. Article (CrossRef Link)

[24] K Lee and S Park, “A service path selection and adaptation algorithm for QoS assurance and load
balancing in context-aware service overlay networks,” International Journal of Web and Grid
Services, vol. 11, no. 3, pp. 265-282, January, 2015. Article (CrossRef Link)

[25] P Francois and O Bonaventure, “Avoiding transient loops during the convergence of link-state
routing protocols,” IEEE/ACM Transactions on Networking (TON), vol. 15, no. 6, pp. 1280-1292 ,
December, 2007. Article (CrossRef Link)

[26] HF Salama, “Multicast routing for real-time communication of high-speed networks,” North
Carolina State University, 1996.

Dan Li received his M.E. and Ph.D. degrees in 2015 and 2018, respectively. He is an
assistant research fellow in National Digital Switching System Engineering and
Technological R&D Center (NDSC), China. His research interests are future network and
routing protocols. Email: pkulidan@foxmail.com

Julong Lan is a professor in NDSC, China. His research interests mainly include routing
and switching design, routing protocols, resource scheduling, network security, and future
network.

Yuxiang Hu is an associate research fellow in NDSC, China. His research interests mainly
include network security, routing protocols and future network.

https://doi.org/10.1109/HPDC.2004.1323507
https://doi.org/10.1504/ijwgs.2015.070963
https://doi.org/10.1109/TNET.2007.902686

