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Abstract 
 

Service Function Chaining (SFC) supports services through linking an ordered list of 
functions. There may be multiple instances of the same function, which provides a challenge 
to select available instances for all the functions in an SFC and generate a specific Service 
Function Path (SFP). Aiming to solve the problem of SFP selection, we propose an 
architecture consisting of distributed SFP algorithm and central control mechanism. Nodes 
generate distributed routings based on the first function and destination node in each service 
request. Controller supervises all of the distributed routing tables and modifies paths as 
required. The architecture is scalable, robust and quickly reacts to failures because of 
distributed routings. Besides, it enables centralized and direct control of the forwarding 
behavior with the help of central control mechanism. Simulation results show that distributed 
routing tables can generate efficient SFP and the average cost is acceptable. Compared with 
other algorithms, our design has a good performance on average cost of paths and load 
balancing, and the response delay to service requests is much lower. 
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1. Introduction 

With the rapid development and wide use of Internet, the store-and-forward function is too 
simple to satisfy the requirement of emerging applications. Network Function Virtualization 
(NFV) [1], proposed in 2012, separates virtual network functions from hardware or 
proprietary devices and further initiatively adapts functions to the specific application 
environment. Under the paradigm of NFV, Service Function Chaining (SFC) [2] supports 
services through linking an ordered list of functions (such as firewalls, proxies, Intrusion 
Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs), which are used to be 
realized as middleboxes [3] on virtualization platforms.  

There may be multiple instances of the same function, which provides a challenge to select 
available instances for all the functions in an SFC and generate a specific Service Function 
Path (SFP) [4]. Most of existing works mainly target on generating SFP in a centralized 
control architecture because the calculation of best SFP is too heavy for distributed nodes. 
What is more, it is much easier to balance load or bandwidth in the whole network with the 
help of central control. However, as the length of the service function chain increases, the 
number of paths that meet the service request increases exponentially. It is also a great burden 
on controller to calculate all of the best SFPs in a large network. In addition, the network 
environment and physical topology have the probability of change in the actual network. If 
network parameters change or nodes and links are added or deleted in the physical topology, 
controller needs to consume a lot of resources and time to recalculate SFPs and forward 
control messages, which restricts the scalability and robustness of network. Therefore, both 
centralized and distributed algorithms have their own shortcomings, so we introduce an 
architecture combining a distributed routing table generation algorithm for SFP and a central 
control mechanism to combine the advantages of distributed and centralized algorithms. 

In this paper, we study the problem of SFP selection, and introduce an architecture 
combining a distributed routing table generation algorithm for SFP and a central control 
mechanism, called as Central-Distributed Service Function Path (CDSFP). There are two 
routing tables in each node, distributed and centralized routing tables. Distributed SFP 
algorithm is just like traditional link-state protocols such as OSPF [5] and IS-IS [6], where 
nodes compute shortest paths over a synchronized view of network topology. However, to 
support SFP selection in the proposed algorithm, not only destination nodes but also the first 
functions in service requests are in distributed routing tables. Controller supervises all of the 
distributed routing tables. If there is a path needing modification, controller calculates best 
SFP and sends centralized routing messages to nodes on the path as required. Centralized 
routing tables have a higher priority than distributed routing tables, so that the distributed path 
can be modified. CDSFP is scalable, robust and quickly reacts to failures because of 
distributed routings, and enables centralized and direct control of the forwarding behavior with 
the help of central control mechanism. 

In summary, we make the major contributions in this paper as follows: 
1) A distributed path can connect function instances and destination node in sequence, so 

it must be an effective path corresponding to the service request. To the best of our 
knowledge, this work is the first effort that uses distributed routing tables to solve the 
problem of SFP selection. 

2) In most networks, best SFP is not necessary if the cost of path is acceptable and other 
service requirements can be satisfied. By setting reasonable parameters in the proposed 
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distributed algorithm, the average cost of paths is just a little higher than best SFP, 
which can satisfy the requirements of most services.  

3) Central control mechanism can reduce the average cost of SFPs, and consider many 
restrictive conditions synthetically, such as bandwidth limitations of links and load 
balancing of the whole network. 

The rest of this paper is organized as follows. Related works are given in Section 2. Section 
3 formulates SFP selection problem and introduces our proposed architecture. In Section 4 we 
describe distributed SFP algorithm and analyze its performance. Section 5 gives a central 
control mechanism to modify distributed paths. In Section 6 simulation results of the proposed 
central-distributed approach are presented and we compare its performance with other existing 
solutions. Finally, this paper is summarized in Section 7. 

2. Related Work 
There is already some works on SFC so far and most researches aim to design algorithms in a 
centralized control architecture. Authors in [7] consider link delays and computational delays 
and set up the problem of deploying service function chains over network function virtualized 
architecture as an integer linear programming optimization problem, along with important 
constraints such as total deployment costs and service level agreements. Ref [8] proposes a 
unified control and optimization framework that combines SFC and SDN. By modeling the 
network and services together and developing optimization techniques, this framework 
benefits the overall system performance in various scenarios. In [9], authors develop an 
approach that uses three algorithms in VNF placement, SFC routing, and VNF migration in 
response to changing workload. The objective is to minimize the rejection of SFC bandwidth 
and consolidate VNFs in as few servers as possible so as to reduce the energy consumed. Ref 
[10] studies how to optimize SFC deployment and readjustment in the dynamic situation. It 
tries to jointly optimize the deployment of new users' SFCs and the readjustment of in-service 
users' SFCs while considering the trade-off between resource consumption and operational 
overhead. Segment routing is used for optimal link mapping in [11] and [12] to promote 
request acceptance ratio and resources utilization ratio. In [13], authors study the joint problem 
of service function chain deploying and path selection for bandwidth saving and VNF reuse. 
They describe the problem as a multi-objective and multi-restriction problem, and propose a 
heuristic service function chain deployment algorithm. The placement aspect of SFC is 
addressed both in [14] and [15] by finding the best locations and hosts for the functions while 
respecting user requirements and maximizing provider revenue. Ref [16] illustrates a dynamic 
service function composition model which optimizes cost, load and other QoS metrics 
simultaneously and proposes a polymorphic derivation algorithm based on Markov 
approximation to obtain an optimal solution. Authors in [17] propose a novel resource 
allocation architecture which enables energy-aware SFC for SDN-based networks, 
considering also constraints on delay, link utilization, server utilization. They formulate the 
problems as integer linear programming optimization problems and design a set of heuristic to 
find near-optimal solutions in timescales suitable for practical applications.  

There are some distributed algorithms that can optimize delay, expense or some other QoS 
metrics. An adaptive triggering policy based on link-usage statistics, is proposed in [18] in 
order to reduce the volume of link state update traffic without deterioration of QoS. The 
algorithms in [19] and [20] define their cost function of links which is a weighted sum of 
response time, cost, reliability and availability and generate best paths based on the shortest 
path algorithm. Central control is introduced in [21] and [22] to modify distributed paths 
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generated according to OSPF to regulate the bandwidth, load or other QoS metrics. However, 
distributed paths generated in the above algorithms cannot correspond to SFCs because data 
packets are forwarded only according to destination nodes in routing tables. SpiderNet in [23] 
is a P2P service composition framework that can simultaneously guarantee QoS and load 
balancing in distributed environment. Authors in [24] propose an algorithm for QoS assurance 
and load balancing (QALB) on the basis of SpiderNet by changing the weights of cost function 
dynamically. In [23] and [24], the service requests and responses are generated in distributed 
nodes, but the selection of path is made centrally by sink node. 

3. Problem Description  
The symbols with their definitions used in this paper are shown in Table 1. We model a 
network as an edge-weighted graph ( ),G V E= in which V and E means the set of nodes and 
links, and ec  is the cost of each link e E∈ . In this paper, the cost of link can be defined as delay, 
energy, expense or some other parameters needing to be reduced. There are some kinds of 
functions. Each function iF  may have a set of instances { }1 2, ,..., iM

i i iF F F deployed on different 
nodes, where iM  is the number of instances. 
 

Table 1. List of symbols used in this paper 
Notation Description 
V The set of nodes 
E The set of links 

ec  The cost of link e   

vL  The maximum available load of node v   

eB  The maximum available bandwidth of link e  
F The set of functions 
n The number of types of functions 

ij
iF  The ij th  instance of function iF  

k The length of SFC 
( )C P  The cost of path P 

iP  The SFP selected for the ith service request 

il  The required load for the ith service request 

vl  The present  load of node v  

ib  The required bandwidth for the ith service request 
AD Paths from A to D 

1... kAF F D  Paths connecting the instances of k functions sequentially from A to D 
d The upper bound of the cost of the shortest paths between any nodes 
h The number of nodes 
p The number of instances 

1h  The average number of hops of the shortest paths between any nodes 
( )f k  The expectation of ( ) ( ) ( )1 2 1min ... min mink k kC F F C F F C F D−+ + +  

α  The weight in the cost function with service 
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1β  The parameter to set a threshold about cost of paths 

2β  The parameter to set a threshold about load balancing 
 
Let R be a service request, { }1 2, , ,..., ,kR A F F F D= , in which k is the number of required 

functions, A  is source node, D is destination node, and{ }1 2, ,..., kF F F  is SFC meaning the 
logical ordered list of functions in a service request. We assume that the functions in each SFC 
are different from each other, and different service requests can share the same instance. The 
SFP selection problem is to select one instance for each function in R , composing a service 
response { }1 2

1 2, ,..., kjj j
kF F F

 
to satisfy R , where ij

iF means the ij th  instance of iF . 
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Fig. 1. An example of SFP selection problem 

 
 

Fig. 1 is an example of SFP selection problem. When source node receives a service 
request { }1 2 3 4, , , , ,R A F F F F D= ，the red solid path { }1 2 4 1

1 2 3 4, , ,F F F F and the blue dashed path 

{ }3 1 2 3
1 2 3 4, , ,F F F F both can satisfy the service request. There may be any service request at any 

time with no prior information. The fundamental objective of SFP selection is to find a path 
which has low cost and satisfies the constraint condition simultaneously whenever a service 
request appears. Given a set of service requests, this objective can be mathematically 
described as: 

 
 ( )Minimize i

i
C P∑   (1) 

Subject to: 
 ,

p i

i v p
v P

l L v V
∈

≤ ∀ ∈∑   (2) 

 
( ) ( )

( )
, ,

, ,
p q i q p i

i i e p q
v v p v v p

b b B v v E
∈ ∈

+ ≤ ∀ ∈∑ ∑   (3) 

Eq. (1) means to minimize the cost of paths. Eqs. (2) and (3) are load and bandwidth 
constraint conditions. To find a feasible solution which can approach the objective, we 
propose an architecture combining a distributed routing table generation algorithm for SFP 
selection and a central control mechanism. 
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4. Distributed SFP Selection Algorithm 

4.1 Structure of Routing Tables  
In traditional link-state protocols, there are only destination nodes in routing tables. 

However, in the problem of SFP selection, both functions and destination nodes in service 
requests should be considered. The problem is that if all of the possible service requests are put 
into routing tables, the number of routings will increases dramatically with the number of 
functions in network. As a result, the complexity to generate and maintain routing tables is 
extremely high, and the routing convergence time is too long to make sure there is no routing 
loop or data loss. Based on the above analysis, we just put destination node and the first 
function in a service request into a distributed routing. Once some node provides the first 
function, it is removed from the service request and replaced by the next function. Each node 
only needs to decide whether to provide the first function in the immediate request without 
considering previous functions. For example, if node B receives { }1 2 3 4, , , , ,R A F F F F D=  and 
provides the first function 1F , the request becomes { }2 3 4, , , ,R A F F F D= and the first function 
becomes 2F . In this way, a distributed path can connect function instances and destination 
node in sequence, so it must be an effective path corresponding to the service request. 

Consider a network with seven nodes shown in Fig. 2, where solid lines connect neighbors. 
B and E can provide function 1F  while C and D can provide function 2F . Part of the routing 
table of A expressed beside A in Fig. 2 is shown in Table 2, where the first function is shown 
as 0 when there is no functions in service requests. The routing tables of B and C are also 
shown in the figure. No matter how many functions there are in a service quest, the nodes just 
make decisions according to the first function and destination node. 
 

A B

D G

H

CE

F1
1 F2

1

F2
2

F1
2

F1 H -> B
F2 H -> C
0  H -> B

F1 H -> B
F2 H -> C
0  H -> H

F1 H -> B
F2 H -> C
0  H -> H

 
Fig. 2. Example of distributed routing tables 

 
Table 2. Part of distributed routing table of A 

First function Destination node Next hop 
F1 H B 
F2 H C 

0 (without service) H B 
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4.2 Cost Function 
The core of distributed SFP algorithm is cost function, based on which the cost of paths is 
calculated and compared through different neighbor nodes. Because both functions and 
destination nodes are considered in the proposed algorithm, we divide paths into two 
categories, (1) paths with service and (2) paths without service. The cost of paths without 
service is as same as the shortest path algorithm. The cost of the shortest path from A to D 
without service is defined as min ( )C AD . 

Considering a service request { }1 2, , ,..., ,kA F F F D , the cost of the shortest SFP can be 
accurately expressed as 
 ( ) ( ) ( ) ( )1 1 1 2 1( ... ) min min ... min mink k k kC AF F D C AF C F F C F F C F D−= + + + +   (4) 

In the proposed distributed SFP algorithm, there is only the first function in a routing, so it is 
usually not possible to calculate and compare the cost by (4). Therefore, we have to compare 
the cost of paths with service by ( )1min C AF and ( )1min C F D . Because ( )1min C AF is an 
addend in (4), we need to analyse the relationship between ( )1min C F D and 

( ) ( ) ( )1 2 1min ... min mink k kC F F C F F C F D−+ + + , which is related to the length of SFC. 
Firstly, we consider the situation that there are just two functions, 1F and 2F . Without loss of 

generality, assuming that the cost of the shortest path between any two nodes is not more than 
d ，we can get, 
 ( ) ( )1 2 20 min , minC F F C F D d≤ ≤   (5) 

According to the properties of inequality and triangle, the relationship can be obtained as 
follows based on (5) 
 ( ) ( ) ( )1 1 2 2min min min 2C F D C F F C F D d≤ + ≤   (6) 
  

The relationship between ( ) ( )1 2 2min min+C F F C F D  and ( )1min C F D  is according to the 
position of instances of 2F . Obviously, if at least one node on the path of ( )1min C F D can 
provide 2F ,  the minimum of ( ) ( )1 2 2min min+C F F C F D  is equal to ( )1min C F D . Let p  be the 
number of instances of function 2F , h  be the number of all the nodes, and 1h be the number of 
hops of ( )1min C F D . The probability that there is at least one instance of 2F on the path of 

( )1min C F D is ( )11 ph h h− − , which is shown in (7). 

 ( ) ( )( ) ( )( ) 1
1 2 2 1min min min min 1

ph hP C F F C F D C F D
h
− + = = −  

 
  (7) 

On the contrary, if none of the instances are on the path of ( )1min C F D , 
( ) ( )1 2 2min min+C F F C F D  is scattered randomly between ( )1min C F D and 2d . Assuming that 

the instances are evenly distributed in a two-dimensional plane, we can estimate the minimum 
of ( ) ( )1 2 2min min+C F F C F D in (8), which happens with probability ( )1

ph h h−  

 ( ) ( )( ) ( ) ( )1 1
1 2 2 1

2 min
min min min min

1

pd C F D h hP C F F C F D C F D
hp

  − −  + = + =     +    
  (8) 
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Combining (7) and (8), ( ) ( )( )1 2 2min min minC F F C F D+  is in accord with the Bernoulli 

distribution. Therefore, the expectation of ( ) ( )( )1 2 2min min minC F F C F D+ , which is 

represented as ( )2f , can be calculated as 

 

( ) ( ) ( ) ( )

( )

11 1
1 1

1 1
1

2 min
2 1 min min

1

2 11 min
1 1

p p

p p

d C F Dh h h hf C F D C F D
h h p

h h h hd C F D
h hp p

   −− −   = − + +          +      
  − −   = + −        + +      

  (9) 

To make following analysis easier, we rewrite ( )2f as (10). Which means inserting 2F  into 
( )1f  

 

( ) ( )

( ) ( )1 1
1

2 1

2 1where , 1 ,  1 min
1 1

p p

f a b f

h h h hda b f C F D
h hp p

= + ×

  − −   = = − =        + +      

  (10) 

Secondly, we incrementally increase the length of SFC. We use ( )3f  to represent 

( ) ( ) ( )( )1 2 2 3 3min min min min+ +C F F C F F C F D which means inserting 3F into ( )2f , so 

that ( )3f can be deduced as 
 ( )(3) 2f a bf= +   (11) 

By analogy, we can obtain the recursion formula of ( )f k , which means the expectation of 
( ) ( ) ( )1 2 1min ... min mink k kC F F C F F C F D−+ + + . 

 ( ) ( )1f k a bf k= + −   (12) 

Substituting ( ) ( )1 1 min=f C F D into (12), we can express ( )f k  as 

 ( ) ( ) ( )
2

2 1 1
1 1

0
... min min

k
k k i k

i
f k a ab ab b C F D ab b C F D

−
− − −

=

= + + + + = +∑   (13) 

Finally, substituting (13) into (4), we have 

 ( ) ( ) ( ) ( )
2

1
1 1 1 1

0
( ... ) min min min

k
k i

k
i

C AF F D C AF f n C AF b C F D ab
−

−

=

= + = + +∑   (14) 

The third addend is a constant which has no effect on the comparison of cost, so we compare 
the cost of paths with service by ( ) ( )1 1min minC AF C F Dα+ , where 

 
1

1 1 11
1

np
k h hb

h p
α

−

−
 − = = −   +  

  (15) 

In a stabilizing network, parameters such as h , 1h and p are almost invariable. The 
parameter k should be the average length of SFCs in the network, by which the 
weightα can be calculated exactly to reduce the average cost in the network. 

4.3 Routing Update 
A node cannot generate its routing table by itself, so we should make the strategy to share 

and update routings between neighbor nodes. Each node should share its routings to neighbor 
nodes periodically and update its routing table as soon as receiving routing messages. Like the 
cost of paths, routing messages also can be divided into two categories, (1) routings without 
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service and (2) routings with service. Some routing messages shared by A are shown in Table 
3, in which ( )0C A H  has no function, and the others have 1F or 2F as the first function. 

 
Table 3. Some routing messages A shares 

First function Destination node Routing message 
F1 H ( )1C AF H  

F2 H ( )2C AF H  

0 (without service) H ( )0C A H  
 
Once a node receives a routing message with service, it adds the cost between it and the 

neighbor node to the cost in routing message, and compares the result with other paths 
containing the same function and destination node. The first two lines of Table 4 illustrate the 
update when E receives routing messages with service from A. 

Once a node receives a routing message without service, it adds the cost between it and the 
neighbor node to the cost in routing message, and compares the result with other paths without 
service, as shown in line 3 of Table 4. What is more, if the node can provide some function iF , 
it adds the cost between it and the neighbor node to the cost in routing message, multiplies the 
sum byα , and compares the result with other paths containing iF . In the last line of Table 3 
we can see that, because E can provide 1F , a new routing with 1F  needs to be added when a 
routing message without service ( )0C A H  is received. 

 
Table 4. Routing update when E receives routing messages. 

Routing message First service Destination node Routing cost 
( )1C AF H  F1 H ( ) ( )1C AE C AF H+  

( )2C AF H  F2 H ( ) ( )2C AE C AF H+  

( )0C A H  
0 (without service) 

F1 

H 

H 

( ) ( )0C AE C A H+  

( ) ( )( )0C AE C A Hα +  

 
Algorithm 1 is designed as the pseudo-code of routing update. After routing update and 

comparison of costs, nodes should put routings with the lowest cost into their routing tables. 
 

Algorithm 1: Routing update (for example, E receives routing messages from A) 
1． for each routing message from A arrived  
2．     set Ac = cost in routing message 
3．     set AEc = cost between A and E 
4．     if there is no service in the message  
5．         Ec without service = min( A AEc c+ , Ec without service)  
6．         if this node can offer function iF   
7．             Ec with iF  = min( ( )A AEc cα + , Ec with iF ) 
8．     else  // there is function iF  in the message 
9．         Ec with iF  = min( A AEc c+ , Ec with iF ) 
10．   end if 
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11．   if Ec  has been changed   
12．       send Ec to other neighbor nodes and controller 
13．   end if 
14． end for 
 
Convergence time is an important indicator of distributed routing update, which means the 

time from detection of changes in network to the end of routing update. To analyze 
convergence time, we refer to the shortest path algorithm of OSPF. Considering a network 
with h nodes and n  functions, the convergence time of OSPF is proportional to the size of 
routing table ( ( )OSPFT O h= ) [25]. In our proposed algorithm, according to Table 1, the 
distributed routing table consists of a OSPF routing table without service and n  OSPF routing 
tables with service, which means ( )1n h+ routings in each table. so the convergence time is 
only ( )( )1DSFPT O n h= + . Because n is usually a single digit, DSFPT can satisfy the 
communication requirement in many networks. 
4.4 Routing Lookup 

After the generation and update of routing tables, nodes can forward or process data 
according to service requests, as shown in Algorithm 2. When a data packet arrives, the node 
gets the first function and destination node (line 2-3), and finds the next hop in its routing table 
(line 7). If the next hop is still this node, it provides the first function, deletes the first function 
from service request, and restarts routing lookup (line 8-12). If the next hop is another node, it 
sends the data packet to the next hop (line 13). The data packet is processed and forwarded 
again and again until it is received by destination node and SFC is empty, which means SFP 
ends (line 4-6). 

 
Algorithm 2: Routing lookup 
1． for each data packet arrived 
2．     set F = the first function in service request 
3．     set D = destination node  
4．        if F is null and D is this node // termination conditions of SFP 
5．         keep the data 
6．     else 
7．         N = lookup(F,D) in routing table  
8．         if N is this node 
9．            this node provide function F 
10．            delete F from service request 
11．            goto (2) 
12．         else // the next hop is another node 

13．            send data packet to N  
14．         end if 
15．     end if 
16． end for 
 
Fig. 3 illustrates the forwarding process after A receives a service request { }1 2, , ,A F F H in 

the network of Fig. 2. A looks up the next hop in its routing table according to ( )1,F H and 
forwards data packet to B. B looks up the next hop in its routing table according to ( )1,F H , 
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provides function 1F , and delete 1F in the service request so that the service request becomes 
{ }2, ,A F H . Then B looks up the next hop in its routing table again according to ( )2 ,F H and 
forwards data packet to C. C looks up the next hop in its routing table according to ( )2 ,F H , 
provides function 2F , and delete 2F in the service request so that the service request becomes 
{ },A H . Then C looks up the next hop in its routing table again according to ( )0, H and 
forwards data packet to H. Finally, the data packet is forwarded to H with no function needed, 
putting an end to this forwarding process. What need to be stressed is that B and C have to 
lookup routing tables twice because they provide function 1F and 2F respectively. 
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D G

H

CE

F1 H -> B
F1 H ->B
F2 H ->C

F2 H -> C
0 H -> H

{ }1 2, , ,A F F H
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{ }2, ,A F H

{ },A H

F1
1 F2

1

F2
2

F1
2

 
Fig. 3. Generation of distributed SFP when A receives a service request{ }1 2, ,F F H   

5. Central Control Mechanism 

5.1 Strategy of Central Control  
Nodes generate and update distributed routing tables, by which data can be processed and 
forwarded independently. However, the algorithm will not give a global optimal solution, so 
the cost of some routings may be very high. In addition, some routings need modification 
because of some restrictive condition. Therefore, we design a central control mechanism to 
solve the problem. To explain our algorithm clearly, in the remainder of this paper, the balance 
of service load, which means the number of functions provided by each node, is considered as 
an example of restrictive condition 

Central control is realized by controller, which obtains network topology information and 
service load of nodes in real time. Controller also monitors the distributed routing table of each 
node and decides whether a distributed SFP needs modification. If so, controller calculates 
best SFP according to network topology and service load, and sends routing messages to nodes 
to change their next hops. Nodes receive and put the messages into their centralized routing 
tables which should be checked firstly. If there is a centralized routing corresponding to the 
service request, the node processes data according to it, or the node will find next hop in its 
distributed routing table. The difference between centralized and distributed routings is that 
only the first function is in a distributed routing, but the whole SFC is in a centralized routing, 
so that a centralized routing just changes one SFP and does not influence other paths. 
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If centralized routing 1 2F F H E→ is send to A, new forwarding processes are illustrated in 
Fig. 4. The service request { }1 2, , ,A F F H is the same in Fig. 3, but the next hop of A is changed 
from B to E. What is more, E and C do not need central control because their distributed 
routings do not need modification. If their next hops generated by distributed routings are not 
on the new path, controller also needs to send routing messages to them. 

A B

D G

H

CE

Distributed SFP
Central SFP
Control messages

F1F2 H -> E

F1 H ->E
F2 H ->C F2 H ->C

0 H ->H

F1 H -> B

{ }1 2, , ,A F F H

{ }1 2, , ,A F F H

{ }2, ,A F H

{ },A H

F2
2

F1
2

F1
1 F2

1

 
Fig. 4. Generation of SFP with central control when A receives a service request { }1 2, ,F F H   

5.2 Trigger condition of Central Control 
To decide whether a distributed SFP needs modification, controller needs to consider two 
factors. The first one is that whether the cost of that path is high, so it is necessary to design a 
method to obtain the cost of distributed paths and best paths. Controller monitors the 
distributed routing table of each node, so it can obtain the distributed SFP and calculates the 
cost once a service request appears. However, the calculation of best SFP for each service 
request will take much time. Therefore, we propose another way to estimate the cost of best 
SFP. 

During the analysis of cost function in section 4.2, we already obtain the relationship 
between ( )1min C F D and ( ) ( ) ( )1 2 1min ... min mink k kC F F C F F C F D−+ + + , shown as (13). Based 
on that, it is easy to deduce the estimation of minimum cost from A to D with k functions, 
which can be expressed as (16). Distributed path needs to be changed if its cost is higher 
than 1β  times the cost of best SFP. 
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1 1 1
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1
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1 1
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  − −   = = −        + +      

∑   (16) 

The second factor is that whether the balance of service load is satisfied. Because the 
objective of load balancing is to minimize the maximum of load in the network, we set a 
threshold about load balancing for each  distributed SFP in (17), which means the maximum of 
load must be lower than 2β  times the average load. In addition, the value of 1β and  
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2β influences the effect of load balancing and the proportion of central control. 

 ( ) 2max
v

v
v

l
l

h
β≤
∑

  (17) 

5.3 Calculation of Best SFP 
In the proposed architecture, controller does not need to work all the time, so we do not care 

a lot about the cost and delay of calculation. Therefore, we choose an exhaustive method with 
the highest calculation accuracy. Controller just traverses all the paths corresponding to the 
service request, sorts them by their cost, and choose a path that has the lowest cost and satisfies 
the balance of service load. The pseudo-code of exhaustive method is shown in Algorithm 3. 

 
Algorithm 3: Exhaustive method 
1． for each service request arrived 
2．     set A = source node 
3．     set D = destination node 
4．     set S = SFC 
5．        set P = the set of paths which connect function instances of S in sequence from A to D 
6．     sort P by the cost of paths 
7．     set sp  the shortest path in P 
8．     if sp  does not satisfy the balance of service load 
9．         delete sp from P 
10．         go to (7) 
11．     end if 
12．     send routing messages to nodes along sp  as required 
13． end for 

6. Experimental Classification Results and Analysis 

6.1 Simulation Design 
To evaluate the performance of the proposed central-distributed architecture, we design 
simulation scenarios in a network topology with 20 nodes that is generated randomly using 
Waxman-Salama model [26]. There are 5 types of functions which can be used to combine 
SFCs and 5 instances randomly deployed for each function in the network. Each SFC is 
constructed by randomly selecting functions and the length of SFC can change from 1 to 5. 
The source and destination of each service request are also selected randomly from all of the 
nodes in the network. To reduce the uncertainty of simulation, we implement 100 simulations 
by Monte Carlo method in each scenario and choose the average value as the simulation result. 

6.2 Performance of Distributed SFP Algorithm  
Firstly, we evaluate the performance of distributed SFP algorithm in the simulation scenarios 
above. Average cost of path is the most important performance metric of distributed algorithm. 
To verify whether the calculation of α is appropriate, we simulate the average cost of 
distributed SFP with different α in the first place. Optimal α in simulations and α calculated 
by (15) with different SFC length are shown in Table 5, in which we can see that the 
calculation of α  agrees well with simulation results. 
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Table 5. Calculated weights and Optimal weights 

SFC length Calculated α  Optimal α  
1 1 1 
2 0.82 0.80 
3 0.67 0.65 
4 0.55 0.55 
5 0.45 0.45 

 
The distribution graphs of the ration of path cost to best SFP and the ration of node load to 

average load in 100 simulations is shown in Fig. 5 and Fig. 6. We can see that the cost of  
about 90% distributed paths are less than 1.4 times the cost of best SFPs. Therefore, if we set 

1 1.4β = , we can make sure that the cost  of all the paths can be acceptable. The distribution of 
load also needs to be balanced because the load of nearly 10% nodes are more than 1.5 times 
the average load, which should be avoided by setting 2 1.5β =  

 
Fig. 5. Distribution graph of the ration of path cost to best SFP 

 
Fig. 6. Distribution graph of the ration of node load to average load 

6.3 Performance of Central Control Mechanism  
In this section, we compare the performance of our design (CDSFP) with other existing 
algorithms in distributed environment, SpiderNet in [23] and QALB in [24]. Exhaustive 
method is also simulated to show the performance of best paths. We set 1 1.4β = and 2 1.5β = , 
so that the proportion of central control is about 20% (1-(1-90%)(1-90%)). 

Before the comparison, we firstly validate our method to estimate the cost of best SFP in 
(16), because it is important to decide whether a distributed SFP needs modification in our 
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design. The cost of best SFP and our estimation result are represented in Fig. 7. The estimation 
result is a little more or less than actual cost, which means that our estimation method is 
reasonable for cost judgment of distributed paths. 

 
Fig. 7.  Average cost of best SFP and estimation result 

 
The maximum load in the network and the average cost of SFP are shown in Fig. 8 and Fig. 

9 respectively. Because only 10% paths are modified by controller for load balancing, the 
maximum of load of CDSFP is a little higher than the other three algorithms, but the gap 
between CDSFP and SpiderNet is very small. However, the average cost of our proposed 
method is only about 10% higher than best paths given by Exhaustive method, and evidently 
lower than QALB and SpiderNet. 

 
Fig. 8. The maximum load in the network using CDSFP and other three existing method 

 
Fig. 9. Average cost of SFP using CDSFP and other three existing method 
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Fig. 10  shows the results on average response delay to each service request. Exhaustive 

method needs the longest time to calculate best paths. QALB and SpiderNet also spend much 
longer time than CDSFP to exchange request and response messages about each service 
request between nodes. In our design, distributed SFP is generated according to routing tables 
as soon as a service request appears, so that the response delay is mainly decided by the 
proportion of central control. When the proportion of central control is about 20%, the 
calculation time is at least 50% lower than other solutions. 

 
Fig. 10. Average response delay to each service request using CDSFP and other three existing 

method 

7. Conclusion 
The generation of SFP is one of the difficult problems in NFV. It is not easy to calculate the 
best SFP in a large network. In this paper, we propose an architecture combining distributed 
SFP algorithm and central control mechanism to select available instances for SFC. Nodes 
generate distributed routing tables and build effective paths for service requests. Controller 
calculates best SFP and modifies some paths by sending centralized routings, which have a 
higher priority. Simulation results reveal that the architecture shows a suboptimal result in the 
average cost .Compared with other centralized algorithms, our architecture is more scalable 
and robust because of distributed routings, and the average response delay to service requests 
is much lower. We believe that new researches can further explore this direction such as the 
optimization of routing tables, the method to modify paths by controller and so on. 

References 
[1] R Mijumbi, J Serrat, J L Gorricho, N Bouten, F De Turck and R Boutaba, “Network function 

virtualization: State-of-the-art and research challenges,” IEEE Communications Surveys & 
Tutorials, vol. 18, no. 1, pp. 236-262, Firstquarter 2016. Article (CrossRef Link) 

[2] P Quinn and J Guichard, “Service function chaining: Creating a service plane via network service 
headers,” Computer, vol. 47, no. 11, pp. 38-44, November, 2014. Article (CrossRef Link) 

[3] X Yuan, D Huayi and W Cong, “Assuring string pattern matching in outsourced middleboxes,” 
IEEE/ACM Transactions on Networking (TON), vol. 26, no.3, pp. 1362-1375, June, 2018.  
Article (CrossRef Link) 

[4] A M Medhat, T Taleb, A Elmangoush, G A Carella, S Covaci and T Magedanz, “Service function 
chaining in next generation networks: State of the art and research challenges,” IEEE 

https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/MC.2014.328
https://doi.org/10.1109/TNET.2018.2822837


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                              593 

Communications Magazine, vol. 55, no. 2, pp. 216-223, February, 2017. Article (CrossRef Link) 
[5] G Apostolopoulos, R Guerin, and S Kamat, “Implementation and performance measurements of 

QoS routing extensions to OSPF,” in Proc. of Infocom 99 Eighteenth Joint Conference of the IEEE 
Computer & Communications Societies, pp. 680-688, March21-25, 1999. Article (CrossRef Link) 

[6] B Fortz and M Thorup, “Optimizing OSPF/IS-IS weights in a changing world,” IEEE journal on 
selected areas in communications, vol. 20, no. 4, pp. 756-767, May, 2002. Article (CrossRef Link) 

[7] D Bhamare, M Samaka, A Erbad, R Jain, L Gupta and, H A Chan, “Optimal virtual network 
function placement in multi-cloud service function chaining architecture,” Computer 
Communications, vol. 102, pp. 1-16, April, 2017. Article (CrossRef Link) 

[8] Y Li, F Zheng, M Chen and D Jin, “A unified control and optimization framework for dynamical 
service chaining in software-defined NFV system,” IEEE Wireless Communications, vol. 22, no. 6, 
pp. 15-23, December, 2015. Article (CrossRef Link) 

[9] V Eramo, E Miucci, M Ammar and F G Lavacca, “An approach for service function chain routing 
and virtual function network instance migration in network function virtualization architectures,” 
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2008-2025, August, 2017.  
Article (CrossRef Link) 

[10] J Liu, W Lu, F Zhou, P Lu and Z Zhu, “On dynamic service function chain deployment and 
readjustment,” IEEE Transactions on Network and Service Management, vol. 14, no. 3, pp.  
543-553, September 2017. Article (CrossRef Link) 

[11] G Xiong, P Sun, Y Hu, J Lan and K Li, “An Optimized Deployment Mechanism for Virtual 
Middleboxes in NFV-and SDN-Enabling Network,” TIIS, vol. 10, no. 8, pp. 3474-3497, August, 
2016. Article (CrossRef Link) 

[12] G Xiong, Y Hu, J Lan and G Cheng, “A Mechanism for Configurable Network Service Chaining 
and Its Implementation,” TIIS, vol. 10, no. 8, pp. 3701-3727, 2016. Article (CrossRef Link) 

[13] D Li, J Lan and P Wang, “Joint service function chain deploying and path selection for bandwidth 
saving and VNF reuse,” International Journal of Communication Systems, vol. 31, no. 6, pp, 
e3523, April 2018. Article (CrossRef Link) 

[14] L Wang, Z Lu, X Wen, R Knopp, R Gupta, “Joint Optimization of Service Function Chaining and 
Resource Allocation in Network Function Virtualization,” IEEE Access, vol. 4, pp. 8084-8094, 
November 2016. Article (CrossRef Link) 

[15] M Mechtri, C Ghribi, D Zeghlache, “A scalable algorithm for the placement of service function 
chains,” IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 533-546, 
September, 2016. Article (CrossRef Link) 

[16] P Wang, J Lan, X Zhang, Y Hu and S Chen, “Dynamic function composition for network service 
chain: model and optimization,” Computer Networks, vol. 92, pp. 408-418, December, 2015. 
Article (CrossRef Link) 

[17] M M Tajiki, S Salsano, L Chiaraviglio, M Shojafar and B Akbari, “Joint energy efficient and 
QoS-aware path allocation and VNF placement for service function chaining,” IEEE Transactions 
on Network and Service Management, vol. 16, no. 1, pp. 374-388, March, 2018.  
Article (CrossRef Link) 

[18] M Yang, T Kim, H Jung, MH Jung and SH Choi, “Performance analysis of an adaptive link status 
update scheme based on link-usage statistics for QoS routing,” ETRI journal, vol. 28, no. 6, pp. 
815-818, December, 2006. Article (CrossRef Link) 

[19] K H Cho, “Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS 
Routing,” Journal of the Korea Society of Computer and Information, vol. 21, no. 4, pp. 17-24, 
April, 2016. Article (CrossRef Link) 

[20] K H Cho, “ Hybrid Link State Update Algorithm in QoS Routing,” Journal of the Korea Society of 
Computer and Information, vol. 19, no. 3, pp. 55-62, March, 2014. Article (CrossRef Link) 

[21] S Vissicchio, O Tilmans and L Vanbever, “Central control over distributed routing,” ACM 
SIGCOMM Computer Communication Review, pp.43-56, 2015. Article (CrossRef Link) 

[22] M Caria, A Jukan and M Hoffmann, “SDN partitioning: A centralized control plane for distributed 
routing protocols,” IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 
381-393, September, 2016. Article (CrossRef Link) 

https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1109/INFCOM.1999.751454
https://doi.org/10.1109/JSAC.2002.1003042
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1109/MWC.2015.7368820
https://doi.org/10.1109/TNET.2017.2668470
https://doi.org/10.1109/TNSM.2017.2711610
https://doi.org/10.3837/tiis.2016.08.003
https://doi.org/10.3837/tiis.2016.08.016
https://doi.org/10.1002/dac.3523
https://doi.org/10.1109/access.2016.2629278https:/doi.org/10.1109/access.2016.2629278
https://doi.org/10.1109/TNSM.2016.2598068
https://doi.org/10.1016/j.comnet.2015.07.020
https://doi.org/10.1109/TNSM.2018.2873225
https://doi.org/10.4218/etrij.06.0206.0106
https://doi.org/10.9708/jksci.2016.21.4.017
https://doi.org/10.9708/jksci.2014.19.3.055
https://doi.org/10.1145/2785956.2787497
https://doi.org/10.1109/TNSM.2016.2585759


594                                                                                                      Li et al.: Central Control over Distributed Service Function Path  

[23] X Gu, K Nahrstedt and B Yu, “SpiderNet: An integrated peer-to-peer service composition 
framework,” in Proc. of 13th IEEE International Symposium on High performance Distributed 
Computing, pp. 110-119, June 4-6, 2004. Article (CrossRef Link) 

[24] K Lee and S Park, “A service path selection and adaptation algorithm for QoS assurance and load 
balancing in context-aware service overlay networks,” International Journal of Web and Grid 
Services, vol. 11, no. 3, pp. 265-282, January, 2015. Article (CrossRef Link) 

[25] P Francois and O Bonaventure, “Avoiding transient loops during the convergence of link-state 
routing protocols,” IEEE/ACM Transactions on Networking (TON), vol. 15, no. 6, pp. 1280-1292 , 
December, 2007. Article (CrossRef Link) 

[26] HF Salama, “Multicast routing for real-time communication of high-speed networks,” North 
Carolina State University, 1996. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dan Li received his M.E. and Ph.D. degrees in 2015 and 2018, respectively. He is an 
assistant research fellow in National Digital Switching System Engineering and 
Technological R&D Center (NDSC), China. His research interests are future network and 
routing protocols. Email: pkulidan@foxmail.com 
 
 
 
 
 

 
Julong Lan is a professor in NDSC, China. His research interests mainly include routing 
and switching design, routing protocols, resource scheduling, network security, and future 
network.  
 
 
 
 
 
 

 
Yuxiang Hu is an associate research fellow in NDSC, China. His research interests mainly 
include network security, routing protocols and future network. 

https://doi.org/10.1109/HPDC.2004.1323507
https://doi.org/10.1504/ijwgs.2015.070963
https://doi.org/10.1109/TNET.2007.902686

