DOI QR코드

DOI QR Code

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display

유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝

  • Bae, Hyeong Woo (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute) ;
  • Jang, Youngchan (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute) ;
  • An, Myungchan (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute) ;
  • Park, Gyeongtae (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute) ;
  • Lee, Donggu (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute)
  • 배형우 (구미전자정보기술원 실감미디어 연구센터) ;
  • 장영찬 (구미전자정보기술원 실감미디어 연구센터) ;
  • 안명찬 (구미전자정보기술원 실감미디어 연구센터) ;
  • 박경태 (구미전자정보기술원 실감미디어 연구센터) ;
  • 이동구 (구미전자정보기술원 실감미디어 연구센터)
  • Received : 2019.11.21
  • Accepted : 2020.01.03
  • Published : 2020.01.31

Abstract

This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Keywords

References

  1. J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, "Organic Electroluminescent Devices", Science, Vol. 273, Issue. 5277, pp. 884-888, 1996. https://doi.org/10.1126/science.273.5277.884
  2. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, "Three-Color, Tunable, Organic Light-Emitting Devices", Science, Vol. 276, Issue. 5321, pp. 2009-2011, 1997. https://doi.org/10.1126/science.276.5321.2009
  3. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, "Electroluminescence in conjugated polymers", Nature, Vol. 397, pp. 121-128, 1999. https://doi.org/10.1038/16393
  4. R.-P. Xu, Y.-Q. Li, and J.-X. Tanga, "Recent advances in flexible organic light-emitting diodes", J. Mater. Chem. C, Vol. 4, Issue. 39, pp. 9116-9142, 2016. https://doi.org/10.1039/C6TC03230C
  5. S. -J. Zou, Y. Shen, F. -M. Xie, J.-D. Chen, Y. -Q. Li, and J. -X. Tang, "Recent Advances in Organic Light-Emitting Diodes: Toward Smart Lighting and Displays", Mater. Chem. Front., Accepted Manuscript, 2020.
  6. L. Merklein, D. Daume, F. Braig, S. Schlisske, T. Rodlmeier, M. Mink, D. Kourkoulos, B. Ulber, M. D. Biase, K. Meerholz, G. Hernandez-Sosa, U. Lemmer, H. M. Sauer, E. Dorsam, P. Scharfer, and W. Schabel, "Comparative Study of Printed Multilayer OLED Fabrication through Slot Die Coating, Gravure and Inkjet Printing, and Their Combination", Colloids Interfaces, Vol. 3 Issue. 1, No. 32, 1-17, 2019. https://doi.org/10.3390/colloids3010001
  7. A. D. Arnold, P. E. Castro, T. K. Hatwar, M. V. Hettel, P. J. Kane, J. E. Ludwicki, M. E. Miller, M. J. Murdoch, J. P. Spindler, S. A. Van Slyke, K. Mameno, R. Nishikawa, T. Omura, and S. Matsumoto, "Full-color AMOLED with RGBW pixel pattern", SID J., Vol. 13, No. 6, pp. 525-535, 2005.
  8. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices", Appl. Phys. Lett., Vol. 72, No. 5, pp. 519-521, 1998 https://doi.org/10.1063/1.120807
  9. S.-C. Chang, J. Liu, J. Bharathan, Y. Yang, J. Onohara, and J. Kido, "Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing", Adv. Mater., Vol. 11, No. 9, pp. 734-737, 1999. https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<734::AID-ADMA734>3.0.CO;2-D
  10. S. -H. Jung, J. -J. Kim, and H. -J. Kim, "High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used vacuum process", Thin Solid Films, Vol. 520, Issue. 23, pp. 6954-6958, 2012. https://doi.org/10.1016/j.tsf.2012.07.084
  11. H. Gorter, M. J. J. Coenen, M. W. L. Slaats, M. Ren, W. Lu, C. J. Kuijpers, and W. A. Groen, "Toward inkjet printing of small molecule organic light emitting diodes", Thin Solid Films, Vol. 532, No. 1, pp. 11-15, 2013. https://doi.org/10.1016/j.tsf.2013.01.041
  12. S. T. Lee, J. Y. Lee, M. H. Kim, M. C. Suh, T. M. Kang, Y. J. Choi, J. Y. Park, J. H. Kwon, H. K. Chung, J. Baetzold, E. Bellmann, V. Savvateev, M. Wolk, and S. Webster, "21.3: A New Patterning Method for Full-Color Polymer Light- Emitting Devices: Laser Induced Thermal Imaging (LITI)", SID Symp. Di. Tech. Pap., Vol. 33, Issue. 1, pp. 784-787, 2002.
  13. J. Y. Lee, and S. T. Lee, "Laser-Induced Thermal Imaging of Polymer Light-Emitting Materials on Poly(3,4-ethylenedioxythiophene): Silane Hole-Transport Layer", Adv. Mater., Vol. 16, Issue. 1, pp.51-54, 2004 https://doi.org/10.1002/adma.200305699
  14. M. B. Wolk, S. Lamansky, W. A. Tolbert, "36.2: Invited Paper: Progress in Laser Induced Thermal Imaging of OLEDs", SID Symp. Di. Tech. Pap., Vol. 39, Issue. 1, pp. 511-514, 2008.
  15. M. Boroson, L. Tutt, K. Nguyen, D. Preuss, M. Culver, and G. Phelan, "16.5L: Late-News Paper: Non-Contact OLED Color patterning by Radiation Induced Sublimation Transfer (RIST)", SID Symp. Di. Tech. Pap., Vol. 36, No. 1, pp. 972-975, 2005.
  16. T. Hirano, K. Matsuo, K. Kohinata, K. Hanawa, T. Matsumi, E. Matsuda, R. Matsuura, T. Ishibashi, A. Yoshida, and T. Sasaoka, "53.2:Distinguished Paper: Novel Laser Transfer Technology for Manufacturing Large-Sized OLED Displays", SID Symp. Di. Tech. Pap., Vol. 38, No. 1, pp. 1592-1595, 2007.
  17. P. Bergese, E. Bontempi, and L.E. Depero, "A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE) method", Appl. Surf. Sci., Vol. 253, Issue. 1, pp. 28-32, 2006. https://doi.org/10.1016/j.apsusc.2006.05.067
  18. V. Holy, U. Pietsch, and T. Baumbach, High Resolution Xray Scattering from Thin Films and Multilayers, Springer, New York, pp. 17-37, 120-128, 1999.