DOI QR코드

DOI QR Code

브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers

  • 배영규 (경북대학교 전자공학부) ;
  • 이승열 (경북대학교 전자공학부)
  • Bae, Young-Gyu (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Lee, Seung-Yeol (School of Electronics Engineering, Kyungpook National Unversity)
  • 투고 : 2020.03.23
  • 심사 : 2020.03.30
  • 발행 : 2020.03.31

초록

This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

키워드

참고문헌

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics", Nature, Vol. 424, No. 6950, pp. 824-830, 2003. https://doi.org/10.1038/nature01937
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons", Phys. Rep., Vol. 408, No. 3-4, pp. 131-314, 2005. https://doi.org/10.1016/j.physrep.2004.11.001
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation", Nat. Mater., Vol. 9, No. 3, pp. 193-204, 2010. https://doi.org/10.1038/nmat2630
  4. K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors", Chem. Rev., Vol. 111, No. 6, pp. 3828-3857, 2011. https://doi.org/10.1021/cr100313v
  5. S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors", Sensors, Vol. 11, No. 2, pp. 1565-1588, 2011. https://doi.org/10.3390/s110201565
  6. Y. Chen and H. Ming, "Review of surface plasmon resonance and localized surface plasmon resonance sensor", Photonic Sens., Vol. 2, No. 1, pp. 37-49, 2012. https://doi.org/10.1007/s13320-011-0051-2
  7. C. L. Wong and M. Olivo, "Surface plasmon resonance imaging sensors: a review", Plasmonics, Vol. 9, No. 4, pp. 809-824, 2014. https://doi.org/10.1007/s11468-013-9662-3
  8. H. H. Nguyen, J. Park, S. Kang, and M. Kim, "Surface plasmon resonance: a versatile technique for biosensor applications", Sensors, Vol. 15, No. 5, pp. 10481-10510, 2015. https://doi.org/10.3390/s150510481
  9. H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, "Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration", J. Appl. Phys., Vol. 106, No. 12, pp.124314(1)-124314(6), 2009. https://doi.org/10.1063/1.3273359
  10. E. K. Akowuah, T. Gorman, and S. Haxha, "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration", Opt. Express, Vol. 17, No. 26, pp. 23511-23521, 2009. https://doi.org/10.1364/OE.17.023511
  11. G. A. Niklasson, C.-G. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials", Appl. Opt., Vol. 20, No. 1, pp. 26-30, 1981. https://doi.org/10.1364/AO.20.000026
  12. E.-S. Yu, S.-H. Lee, Y.-G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S.-Y. Lee, S.-D. Lee, Y.-S. Ryu, "Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure", ACS Appl. Mater. Interfaces, Vol. 10, No. 44, pp. 38581-38587, 2018. https://doi.org/10.1021/acsami.8b12553
  13. D. A. G. Bruggeman, "The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances", Ann. Phys., Vol. 416, No. 1, pp. 636-791, 1935. https://doi.org/10.1002/andp.19354160705
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices", Appl. Opt., Vol. 37, No. 1, pp. 5271-5283, 1998. https://doi.org/10.1364/AO.37.005271
  15. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics, CRC Press, New York, pp. 326, 2012.