참고문헌
- Zhi Peng Chang, Yan Wei Li, Nazish Fatima, "A theoretical survey on Mahalanobis-Taguchi system," Elaevier, Measurement, 136, pp. 5011-510, (2019).
- Boby John, R.S.Kadadevarmath., "A Methodology for quantitatively managing the bug fixing process using Mahalanobis Taguchi System", Measurement Science Letters, 5, pp. 1081-1090, (2015).
- Xiaohang Jin, Yu Wang, Tommy W.S. Chow, Y. Sun, "Mahalanobis Distance Based Approaches for System Health Monitoring", IET Science Measurement & Technology, 11, pp. 371-379, (2017). https://doi.org/10.1049/iet-smt.2016.0340
- Taguchi. G., Rajesh. J., "New Trends in Multivariate Diagnosis", Indian Journal of Statistics, Series B, 62(2), pp. 233-248, (2000).
- Wu. Y., "Pattern Recognition using Mahalanobis Distance", Journal of Quality Engineering Forum, 12(5), pp. 787-795, (2004).
- Sahoo. A.K., Rout. A.K., Das. D.K., "Response surface and artificial neural network prediction model and optimization for surface roughness in machining", International Journal of Industrial Engineering Computations, 6, pp.229-240, (2015). https://doi.org/10.5267/j.ijiec.2014.11.001
- T. Riho, A. Suzuki, J. Oro, et al, "The yield enhancement methodology for invisible defects using the MTS+ method", IEEE Trans. Semicond. Manuf., I8(4), pp. 561-568, (2005).
- Yang, T. Cheng, Y.T., "The use of Mahalanobi-Taguchi System to improve flip-chip bumping height inspection efficiency", Microelectron. Reliab., 50(3), pp. 407-414, (2010). https://doi.org/10.1016/j.microrel.2009.12.001
- F. Provost, T. Fawcett, "Robust classification for imprecise environments", Machine Learning, 42(3), pp.203-231, (2001). https://doi.org/10.1023/A:1007601015854
- Jardine, A.K.S., Lin. D., Banjevic. D., "A Review on machinery diagnostics and prognostics implementing condition-based maintenance", Mech. Syst. Signal Process., 20, pp. 1483-1510, (2006). https://doi.org/10.1016/j.ymssp.2005.09.012