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Learning through “recreational mathematics” has become a meaningful outlet to children 

of all ages.  The Edumatrix set is a didactic tool for the development of logical and abstract 

reasoning among students.  In this paper, we provide several illustrative exercises involving 

Edumatrix that teachers can utilize in their classrooms.  We formulate students’ expected 

learning outcomes by aligning each exercise to the CCSSM content standards as well as 

examining which Standards for Mathematical Practices (SMP) our proposed exercises 

promote. 
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I. INTRODUCTION 

 

Perhaps no one has popularized “recreational mathematics” more than Martin Gardner.  

As the columnist of “Mathematical Games” in Scientific American from 1957 and for three 

decades, his estimated 300 columns inspired “developments with real impact on science, 

technology and society” (Mulcahy, 2014).  Some of the more popular articles comprise:  

“Flexagons, in which strips of paper are used to make hexagonal figures with unusual 

properties” (Gardner, 1956); “More about complex dominoes” (Gardner, 1957); 

“Extraordinary nonperiodic tiling that enriches the theory of tiles” (Gardner, 1977).   
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Learning through “recreational mathematics” has become a meaningful outlet to 

children of all ages (Olson, 2007).  To supplement the traditional school mathematics 

curriculum, educators need to consider the available and yet grade-appropriate resources, 

such as interactive tactile games, mobile applications, gaming technologies, programming 

environments, and the Internet.  Decisions regarding learning pedagogies, classroom 

assessments, and the optimal balance between educational and “playing” components are 

bound to occur and reoccur for educators.  Moreover, they must acquire the professional 

competencies to assess when it is beneficial to implement “recreational mathematics” that 

may or may not be aligned to the school curriculum.   

Through the years, the popular card and board games like SET, Rush Hour, and Meta-

Forms have engaged children to expand their logical and problem-solving skills through 

“playing.”  In creative programming environments (CPEs) that foster algorithmic thinking, 

development of programming knowledge, and actively cultivating as well as using 

mathematical reasoning, programs such as Alice, Kumir, Logo, Scratch, and Snap! have 

become popular.  (An extensive list of the available CPEs can be found at 

http://juniorcodeacademy.eu/resources/.)   

In this article, we introduce a popular Polish game, Edumatrix.  While the Information 

and Communication Technologies (ICTs) have advanced worldwide and in turn are 

reflected in school curriculum, Edumatrix is more aligned with SET1, Rush Hour2, and 

Meta-Forms 3  in that the game does not require the use of computers nor programs.  

Implementing Edumatrix is most appropriate at the preschool and elementary school levels.  

Yet, as the below exercises (“The Reverse Polish Notation,” “Binary Numbers,” and “Area 

Calculation”) show, Edumatrix can be incorporated into middle and high school 

mathematical lessons.  In this paper, we will examine that the systematic use of Edumatrix 

permits students to articulate their original work and to develop their mathematical habits 

of mind.  The purpose of the article is to demonstrate several Edumatrix exercises and their 

associated didactic capabilities, to formulate the expected learning outcomes, and to discuss 

the use of Edumatrix in developing students’ mathematical content knowledge as well as 

the practice proficiencies advocated by the Common Core State Standards for Mathematics 

(CCSSM; NGA & CCSSO, 2010).  Finally, a brief discussion on plausible future research 

steps follows. 

 

 

 

                                                
1
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II. LITERATURE REVIEW 

 

The Edumatrix set is made of natural materials and can be easily found in markets 

throughout Poland and Russia (Pollak et al., 2016).  Edumatrix is a didactic tool for the 

development of logical and abstract thinking among students (Wijata et al., 2016).  As 

Ludorowska (2018) argues, Edumatrix can provide illustrative tasks on symmetry, 

statistical reasoning, logical puzzles, algorithmic thinking, and creative expressions.  In 

their study, Pollak and her colleagues (2016) describe the educational experiments and 

methods for assessing the effectiveness in using the Edumatrix set in the development of 

computational skills.  Specifically, the experimental group, consisting of seven- to nine-

year-old children, utilized Edumatrix daily (15-30 minutes) for a six-week duration, while 

the control group solved the same mathematical problems employing the traditional 

methods.  The researchers conclude that in addition to improvements in the quantitative 

characteristics, like the speed and accuracy in solving the problems, the qualitative factor, 

such as students’ overall satisfactory response in using Edumatrix, enhanced as well.  

Similarly, Semenov and his colleagues (2016) confirm that students’ academic 

performance increased noticeably due to the use of the projects’ method.  

For students, the transition process from empirical activities to logical and abstract 

reasoning is complex, yet necessary to broaden their intellectual development (Simon & 

Tzur, 2004).  However, as most educators can attest, this process is not simple.  Much work 

entails careful considerations of the subsequent factors:  selection of cognitively 

challenging tasks and appropriate tools, students’ prior knowledge relating to the tasks, and 

the degree to which the tasks supplement the curriculum and enrich the learning experience. 

Welcoming this challenge, educators explore innovative approaches.  In fact, the 

teaching and learning culture implores the teachers, researchers, learners, administrators, 

policymakers, and publishers to continue to think outside the prescribed “box”—i.e., the 

broadly accepted norms.  For example, Ludorowska (2018) advocates the benefits of 

illustrative examples that include simple tasks involving guided action statements and 

complex logical puzzles necessitating cyclic algorithms.  Carroll and Porter (1998) promote 

student-generated algorithms and empowering students to incorporate their prior 

experiences.  

An analysis of the above literature review reveals that much focus has been devoted to 

the pedagogical methods in the development of professional competencies needed to 

support students’ use of the ICTs.  Yet, there lacks any meaningful examination of the 

issues of teaching and learning of the basic concepts of programming through the 

Edumatrix set at the preschool and elementary school levels.  In the era when educators are 

competing for students’ time, focus, and priorities and when information technologies have 

a significant impact on socio-economic development, a pressing problem arises:  when and 
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how to introduce students to programming and continue to foster their problem solving and 

logical reasoning abilities.  The subsequent sections of this study investigate the didactic 

capabilities.  

 

   

III. DIDACTIC CAPABILITIES AND EXPECTED LEARNING OUTCOMES 

 

Considering a pedagogical justification in using the Edumatrix set, we advocate 

Vygotsky’s social learning theory (Vygotsky, 1991).  Within the subject-professional and 

social contexts, the teacher serves as the specialist.  Applying the social development model 

provides ample opportunities for collaborative work in small group settings, and the 

participants include the students and teacher—and ideally, parents.  Kim and his colleagues 

(2012) observe that students learn mathematics effectively when the teacher guides lessons 

so that students have occasions to interact with each other.  Moreover, Light (2001) notes 

that students, who learned in collaborative group settings, showed significantly higher 

academic performances than those who learned individually.  

When facilitating the Edumatrix exercises, the teacher’s primary focus is to plan and 

organize interactive moments within groups as well as to establish a productive classroom 

atmosphere.  Specifically, the teacher serves in the following roles:  encourager, coordi- 

nator, counselor, and evaluator.  Throughout this envisioned facilitation, the teacher is 

mindful to group students into mixed ability grouping to maximize peer-to-peer teaching 

and learning moments.  Intricacies of interactions are new experiences for students due 

primarily to playing and social connections. 

 

 

1. ILLUSTRATIVE EXERCISES AND DIDACTIC CAPABILITIES 

 

In this section, we provide several illustrative exercises involving the Edumatrix set.  To 

solve some exercises, basic and advanced prerequisite mathematical knowledge is expected.  

In other exercises, students can reinforce their prior mathematical understanding, and in 

some instances, they will investigate new mathematical concepts and algorithmic reasoning. 

Before we examine the exercises, let us inspect the below Edumatrix boards and their 

arrangements (Figure 1).  Readers can attest that the left board is similar to the Microsoft 

Excel spreadsheet in that we see the column designations with the capital English letters, 

A, B, C, ..., J, and the row designations with the Hindu-Arabic numbers, 1, 2, 3, …, 10.  In 

a spreadsheet or a matrix arrangement with the 10 by 10 dimensions, one could interpret 

the left board to represent a flower.  In short, some Edumatrix blocks have bright colors.  

On the other hand, as the below right board indicates, the grid resembles the first quadrant 
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of the Cartesian Coordinate System.  Along with some colored blocks, the right board 

contains various symbols and numbers.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sample Edumatrix boards 

 

As the above images demonstrate, the Edumatrix blocks are movable, tangible objects.  

The Edumatrix set supports preschool and elementary school children in particular to 

brainstorm and express their reasoning easily when compared to drawing or notating on a 

piece of paper or even imitating the boards in a virtual environment.  Afterall, there is 

nothing like playing chess against a real person with real game pieces. 

 

Exercise 1:  Kasia Plants Flower Bulbs 

Ludorowska (2018, p. 19) shares the following exercise: 

On Monday, Kasia planted 3 red tulip bulbs.  On Tuesday, she did not 

plant anything.  On Wednesday, she planted 5 daffodil bulbs.  On 

Thursday, she did not plant anything.  Finally, on Friday, she planted 2 

green tulip bulbs.  (1) How many flower bulbs did Kasia plant during the 

whole week?  (2) On which day of the week did Kasia plant the fewest 

number of bulbs?  (3) On which day of the week did Kasia plant the most 

bulbs?  (4) How many more bulbs did Kasia plant on Wednesday than on 

Monday?  (5) How many fewer bulbs did Kasia plant on Friday than on 

Monday? 

To answer the above questions, elementary school children will benefit by “visualizing” 

Kasia’s planting throughout the week.  With guidance, children can create the below 

Edumatrix board (Figure 2): 
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Figure 2. Data representing Kasia’s planting flower bulbs 

From this particular student’s work, we can make the following observations:  

On the x-axis, 1 represents Monday, 2 represents Tuesday, 3 represents Wednesday, 

4 represents Thursday, and 5 represents Friday.  We see the matched colored blocks 

to represent the planted tulip and daffodil bulbs.  The upper right hand portion of 

the board provides the subsequent statistical information:  the total number of bulbs 

planted during the whole week (indicated by the Greek capital letter sigma, 𝛴)  

equals 10; the minimum number of bulbs planted on any given day (excluding the 

no planting days, Tuesday and Thursday) equals 2; and the maximum number of 

bulbs planted on any given day equals 5. 

Having organized the given information in this manner, the student can answer the 

posed questions more informatively: 

(1) How many flower bulbs did Kasia plant during the whole week?  10 

(2) On which day of the week did Kasia plant the fewest number of bulbs?  Friday 

(3) On which day of the week did Kasia plant the most bulbs?  Wednesday 

(4) How many more bulbs did Kasia plant on Wednesday than on Monday?  5 - 3 

= 2 

(5) How many fewer bulbs did Kasia plant on Friday than on Monday?  3 - 2 = 1 

This exercise helps young students to understand the meaning of a situation by 

representing the data as a bar graph.  With this formulated board, students find the answers 

to the posed questions.  In short, students make sense of the quantities in the given context 

due to the utility of the Edumatrix set.   

 

Exercise 2:  The Reverse Polish Notation 

We are familiar with the meaning behind an arithmetic expression 2+3.  We place the 

operator (+) between the operands (or terms) (2 and 3), and we state that 2+3 is in the “infix 



An Introduction to the Edumatrix Set and Its Didactic Capabilities  53 

notation.”  In comparison, the Polish Notation (PN), or sometimes referred to as the “prefix 

notation,” is when the placement of the operator is before the operands.  In other words, 

the above expression, 2+3, is written as +23 in PN.  Lastly, in the Reverse Polish Notation 

(RPN), or sometimes referred to as the “postfix notation,” the placement of the operator 

follows the operands.  In the RPN, we write the original expression as 23+. 

Using the RPN, rewrite the expression, A+B×C.  Without looking at the next board, 

take a moment to solve this task in earnest.  As the blocks in row 2 of Figure 3 reveal, the 

operands are sequenced from left to right, ABC, and the operators are written from right to 

left, ×+.  Putting these two conventions together, we conclude that ABC×+ in RPN 

represents the original expression, A+B×C.  Could another student also express A+B×C as 

AB+C×?  In short, one could make a strong case that multiple expressions in the RPN are 

equivalent.   

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. The infix notation versus the RPN 

Next, attempt to use the Edumatrix blocks to express the below expressions in RPN: 

(a) C×B+A     (b) A×B+C×D     (c) (A+B)/(C-D) 

Solutions:  (a) CB×A+     (b) AB×CD×+     (c) AB+CD-/  

As one can see from the final case (c), the Reverse Polish Notation permits us to omit 

the grouping symbols (parentheses)—hence, uses four fewer blocks.  Finally, test your 

partner by providing an expression in the infix notation and ask her to provide an equivalent 

RPN.  Note that formulating thought-provoking questions can be just as challenging as 

solving them. 

Through this exercise, students use their prior knowledge of the order of operations to 

minimize the number of blocks.  Teachers should “be aware of learners’ prior knowledge 

about particular topics and how that knowledge is organized and structured” while 
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observing their arrangements of the Edumatrix blocks (Borko & Putnam, 1995, p. 42).  As 

researchers have shown, “learning is enhanced when teachers pay attention to the 

knowledge and beliefs that learners bring to a learning task, use this knowledge as a starting 

point for new instruction, and monitor students’ changing conceptions as instruction 

proceeds” (Bransford et al. 1999, p. 11).   

 

Exercise 3:  The Braille Alphabets 

Learning languages can benefit one’s professional opportunities, life’s outlook, and 

appreciation of distinctive cultures.  Learning a sign language or how to read Braille leads 

to an enhanced empathy toward those who have auditory, speech, or vision impediments.  

This exercise explores how to communicate using the Braille alphabet.  Students can 

formulate words using the Edumatrix blocks and challenge each other to decipher the words 

or even messages that they have created.   

First, let us examine the Braille alphabet below as shown in Figure 4.  Each letter can 

be formed by placing raised “dots” within the three rows by two columns matrix block.  

For example, we can create the letter “r” by placing the Edumatrix blocks into A1, A2, A3, 

and B2. 

 

 

 

 

 

 

 

 
 

Figure 4. The Braille alphabets 

Before creating words, students might benefit more by examining the actual Braille texts.  

For example, Figure 5 below denotes “Spring!” in the context of a poem and its Edumatrix 

representation. 

First, we notice that there are six, three rows by two columns matrix blocks.  Comparing 

the text to the Braille alphabets, we can match up the second, third, and fourth matrix blocks 

as the letters, s, p, r.  So, what does the first matrix block indicate?  After some search on 

the Internet or maybe some time to ponder about the differences among the letters, s, p, r, 

one can conclude that the first matrix block, represented by B3, indicates that a capital letter 

will follow—hence, combing the first two matrix blocks, (B3) and (A2, A3, B1), we get 

the capital S. 
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Figure 5. The Braille word, “Spring!” and its Edumatrix representation 

Now, how do we match up the remaining letters, i, n, g, and the exclamation symbol (!), 

with the two unknown matrix blocks?  As expected, Braille does not “spell out” words 

using every letter.  Since “ing” is so often used, the fifth matrix block, (A3, B1, B3), 

represents the three remaining letters.  Moreover, the final matrix block, (A2, A3, B2), 

represents the exclamation symbol, !.  Finally, it would be exceptionally gratifying for 

students to actually close their eyes and read some of their words or some of the words 

created by their classmates and be able to relate more with the people of the Braille world. 

Some may argue the usefulness of this exercise in developing students’ mathematical 

skills and concepts.  Contrarily, this exercise can enhance students’ generalization skill by 

representing the Braille words and analyzing the patterns by using Edumatrix blocks.  Many 

teachers use patterns to promote generalization in a pre-algebraic context (e.g. Mason, 

1996).   

 

Exercise 4:  Binary Numbers  

With the advent of computers and programming in the 20th century, scientists have 

utilized binary numbers.  For prospective elementary school teachers, examining numbers 

in different bases (for example, base 2, base 20, and base 60) provides a greater 

understanding and much appreciation of the base-10 (decimal), place-value system. 

As a convention, we could let a block in a cell to denote “1” and an empty cell to denote 

“0.”  For example, if we place the three blocks into E1, F1, and J1 (see Figure 6), the 

corresponding binary number is 1100012.  Additionally, we can convert this value into the 

equivalent base-10 place-value number by carrying out the following computations: 

1100012 = 1×25 + 1×24 + 0×23 + 0×22 + 0×21 + 1×20 
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   = 32 + 16 + 0 + 0 + 0 + 1 

   = 49 

In short, 1100012 is equivalent to 49. 

 

  

 

 

 

 

 

Figure 6. Blocks representing the binary number 1100012 

Using the Edumatrix blocks, try the following exercises: 

● Represent 10111002.  Did you start at D1 with a block?  Why starting at C1 

with a block can be confusing? 

● Formulate 10111002 on the board and ask your partner to find the equivalent 

base-10, place-value number. 

● Given 987, determine, with your partner, the equivalent binary number and 

display this on the board.  

● Using only one row, what is the largest binary number can you form?  What is 

its equivalent base-10 place-value number? 

This exercise helps students to compare and contrast between the decimal system and 

the binary system.  By converting binary numbers into decimals and vice versa, students 

learn how to represent base-10 numbers differently.  Furthermore, teachers can expand 

upon this activity by guiding students to create simple programs that uses binary 

counting. 

 

Exercise 5:  Simple Programming  

The Edumatrix set includes blocks to create a set of instructions for programming.  For 

instance, compare and contrast the below two boards (Figure 7).  Can you make sense of 

the instructional steps found on the left board?  Of course, it would be helpful if you 

compare them to the output found on the right board.  It appears the unique block in A1 
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indicates the command, “Starting cell.”  In short, we can interpret row 1 instruction as 

“Starting cell equals A2.”  Row 2 provides the following instructional steps: 

● place a red block in A2, 

● move one space right and place a green block, 

● move one space down and place a blue block, and 

● move one space left and place a yellow block. 
 

Figure 7. Programming instructions and the output 

Having carried out all instructional steps, students should have created the output shown 

on the right board in Figure 7.  

In related exercises, educators could explore a wealth of possible tasks:  (1) given a 

board arrangement, students, in small groups, formulate the programming steps; (2) 

conversely, given a set of programming steps, students articulate the output.  In particular, 

the first task could generate students’ varying perspectives and their distinctive 

programming steps. 

 

Exercise 6:  Area Calculation  

This exercise involves the task:  Given three randomly placed noncollinear blocks that 

represent three vertices of a triangle, determine its area.  Let us say that three green blocks 

were randomly placed on the Edumatrix board (see Figure 8).  Considering the blocks’ 

absolute references (A1, B4, and D3), we can transform them into their relative references 

as vertices of the triangle in a modified Cartesian Coordinate System.  In other words, A1, 

B4, and D3 blocks correspond to the coordinates (1, 1), (2, 4) and (4, 3), respectively.   

Next, applying the Gaussian Area Formula (or the Shoelace Algorithm), we get: 

Area = 0.5|(𝑎1 ∙ 𝑏2 + 𝑎2 ∙ 𝑏3 + 𝑎3 ∙ 𝑏1) − (𝑏1 ∙ 𝑎2 + 𝑏2 ∙ 𝑎3 + 𝑏3 ∙ 𝑎1)| 

 = 0.5|(1 ∙ 4 + 2 ∙ 3 + 4 ∙ 1) − (1 ∙ 2 + 4 ∙ 4 + 3 ∙ 1)| 



 Mikhail Semenov, Yong S. Colen,1Jung Colen & Antony Pardala  58 

 = 0.5|(4 + 6 + 4) − (2 + 16 + 3)| 

 = 0.5|(14) − (21)| 

 = 0.5|7|  

 = 3.5 

 
 
 

Figure 8. Random blocks (vertices) and area calculation 

We should note two aspects about this exercise:  (1) The polygons are not restricted to 

triangles.  Students can calculate the areas of quadrilaterals, pentagons, hexagons, etc. (2) 

Mathematically, this exercise is quite challenging.  While proving the formula is beyond 

the scope of a typical high school curriculum, applying the theorem has positive benefits.  

Similarly, the Heron’s Formula to calculate the area of a triangle based on the side lengths 

is quite ingenious even though the proof is beyond the school mathematics.    

 

 

2. EXPECTED LEARNING OUTCOMES 

 

In this section, we discuss students’ expected learning outcomes.  First, we align each 

exercise to the CCSSM content standards that define the domains grade-level students 

should understand and be able to do.  Next, we examine which Standards for Mathematical 

Practices (SMP) the proposed exercises promote. 

Several illustrative exercises align well with the mathematical concepts advocated by 

the Common Core State Standards for Mathematics: 

● Exercise 1:  Kasia Plants Flower Bulbs 

CCSS.MATH.CONTENT.1.OA.A.1  
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Use addition and subtraction within 20 to solve word problems involving 

situations of adding to, taking from, putting together, taking apart, and 

comparing, with unknowns in all positions, e.g., by using objects, drawings, 

and equations with a symbol for the unknown number to represent the problem. 

CCSS.MATH.CONTENT.3.MD.B.3 

Draw a scaled picture graph and a scaled bar graph to represent a data set with 

several categories. Solve one- and two-step “how many more” and “how many 

less” problems using information presented in scaled bar graphs. For example, 

draw a bar graph in which each square in the bar graph might represent 5 

pets. 

● Exercise 2:  The Reverse Polish Notation 

CCSS.MATH.CONTENT.5.OA.A.2 

Write simple expressions that record calculations with numbers, and interpret 

numerical expressions without evaluating them. 

CCSS.MATH.CONTENT.6.EE.A.2.C 

Perform arithmetic operations, including those involving whole-number 

exponents, in the conventional order when there are no parentheses to specify 

a particular order (Order of Operations).  

● Exercise 3:  The Braille Alphabets 

CCSS.MATH.CONTENT.4.OA.C.5 

Generate a number or shape pattern that follows a given rule. Identify apparent 

features of the pattern that were not explicit in the rule itself. 

● Exercise 4:  Binary Numbers 

CCSS.MATH.CONTENT.4.OA.C.5 

Generate a number or shape pattern that follows a given rule. Identify apparent 

features of the pattern that were not explicit in the rule itself. 

● Exercise 5:  Simple Programming 

CCSS.MATH.CONTENT.4.OA.C.5 

Generate a number or shape pattern that follows a given rule. Identify apparent 

features of the pattern that were not explicit in the rule itself. 

● Exercise 6:  Area Calculation 

CCSS.MATH.CONTENT.5.G.A.1 

Use a pair of perpendicular number lines, called axes, to define a coordinate 

system, with the intersection of the lines (the origin) arranged to coincide with 

the 0 on each line and a given point in the plane located by using an ordered 

pair of numbers, called its coordinates. Understand that the first number 

indicates how far to travel from the origin in the direction of one axis, and the 

second number indicates how far to travel in the direction of the second axis, 
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with the convention that the names of the two axes and the coordinates 

correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). 

CCSS.MATH.CONTENT.6.EE.A.2.C 

Evaluate expressions at specific values of their variables. Include expressions 

that arise from formulas used in real-world problems. Perform arithmetic 

operations, including those involving whole-number exponents, in the 

conventional order when there are no parentheses to specify a particular order 

(Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to 

find the volume and surface area of a cube with sides of length s = 1/2. 

Utilizing the Edumatrix set, a teacher could plan lessons relating to the proposed 

exercises.  The expected learning outcomes associated with the SMP are: 

● to make sense of problems (Exercises 1, 2, 3, 4, 5, 6); 

● to reason abstractly and quantitatively (Exercises 1, 4, 5, 6); 

● to construct viable arguments and critique the reasoning of others (Exercises 

2, 3, 4, 5, 6); 

● to model with mathematics (Exercises 1, 5, 6); 

● to attend to precision (Exercises 1, 2, 3, 4, 5, 6); 

● to look for and make use of structure (Exercises 2, 4, 6); 

● to look for and express regularity in repeated reasoning (Exercises 2, 4, 5, 6). 

Most importantly, in the exercises, the teacher will have introduced and students will have 

used the appropriate tool (Edumatrix) strategically. 

 

 

IV. DISCUSSION 

 

Implementing Edumatrix, teachers could envision limitless didactic capabilities and 

learning outcomes.  As we stated at the onset and demonstrated through the exercises, 

students reinforced their prior mathematical understanding and investigated new 

mathematical concepts and algorithmic reasoning.  Moreover, as expounded within this 

paper, educators should value:  (1) students to make sense of the quantities in the given 

context and if needed, to utilize appropriate tools; (2) students to formulate thought-

provoking questions which can be just as challenging as solving them; (3) students to 

generalize based on the given parameters; (4) students to ponder deeply about the complex 

and yet elegant decimal system by examining the other number systems, such as the binary 

system, the Mayan base-20 system, and the Babylonian base-60 system; (5) students to 

articulate and have ownership of their newly invented programming languages; (6) students 

to visualize rich mathematical concepts.  In particular, as “Kasia’s Planting Flower Bulbs” 
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and “Simple Programming” exercises demonstrate, we believe the greatest promise lies in 

students’ expressing their original thoughts in collaborative settings.  

Educators could explore future research involving the use of the Edumatrix set within a 

specific content domain.  For example, the CCSSM (NGA & CCSSO, 2010) promotes the 

following sixth-grade, statistics and probability standard: 

Understand that a set of data collected to answer a statistical question has 

a distribution which can be described by its center, spread, and overall 

shape. (CCSS.MATH.CONTENT.6.SP.A.2) 

Research studies, such as the proposed one, can validate the prior studies and provide the 

explicit benefits and any shortcomings in the use of Edumatrix.  

In an era that has witnessed a proliferation of “screenagers”—children who spend hours 

each day texting, twitting, facetiming, browsing, shopping in virtual settings—it would be 

beneficial for younger children to reclaim the benefits of seeing, holding, and manipulating 

tactile objects, such as the Edumatrix cubes on the wooden boards.  While there is much 

evidence to support that technology can enhance students’ reasoning in mathematics, we 

should reaffirm that much can be learned with paper and pencils, blackboard and chalks, 

and compass and straightedge.  The authors advocate adding the Edumatrix set to the 

venerable list. 
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