DOI QR코드

DOI QR Code

Shield TBM trouble cases review and parameter study for the cause analysis

쉴드 TBM 트러블 사례 및 매개변수 연구를 통한 원인 분석

  • Koh, Sungyil (SEOHA Engineering Co., Ltd.) ;
  • La, You-Sung (Dept. of Geotech and Tunnel, SEOHA Engineering Co., Ltd.) ;
  • Kim, Bumjoo (Dept. of Civil and Environmental Engineering, Dongguk University)
  • Received : 2020.02.14
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

Shield TBM tunneling, used in the construction of Seoul subway line 7 and line 9, has been well known as a very efficient, as well as safe, tunneling method. Although the Shield TBM method has been known to be effectively used in poor ground conditions, a number of troubles have occurred during the use of the shield TBM, due to inappropriate machine selection, machine breakdown, and unpredicted ground conditions etc. In this study, several accidents and trouble cases occurred during excavation by Shield TBM, reported from Japan, were investigated. A series of numerical analysis was then performed to compare with the trouble cases and back-analysis results for the cause analysis. The lessons learned from the case studies are presented at the end.

서울지하철 7, 9호선에 적용한 쉴드TBM은 소음 및 진동, 막장면의 안정성 확보 측면에서 발파공법에 비해 매우 안전한 공법이다. 또한, 쉴드TBM은 지반조건이 연약한 경우 효과적이다. 그러나 지반조건과 토피, 지하수 등의 여건에 적합하지 않은 장비를 적용할 경우 장비고장, 잦은 굴진중단, 특히 예상치 못한 불량한 지반을 통과하게 될 경우 터널 굴진 중 트러블이 발생할 수 있다. 본 논문은 일본 쉴드TBM 굴착중의 사고 및 트러블에 대한 사례를 정리하였다. 이중 대표적인 트러블 사례를 이용하여 지반변위 형상에 대한 실제발생 경향을 파악하였으며 수치해석을 통해 역해석결과와 상호비교하였다. 이를 토대로 막장 지보압을 산정할 경우 수치해석 적용시의 오차를 줄이는 방안을 제안하였다.

Keywords

References

  1. Anagnostou, G., Kovari, K. (1994), "The face stability of slurry-shield-driven tunnels", Tunnelling and Underground Space Technology, Vol. 9, No. 2, pp. 165-174. https://doi.org/10.1016/0886-7798(94)90028-0
  2. Anagnostou, G., Kovari, K. (1996), "Face stability conditions with earth-pressure-balanced shields", Tunnelling and Underground Space Technology, Vol. 11, No. 2, pp. 165-173. https://doi.org/10.1016/0886-7798(96)00017-X
  3. ITA WG Mechanized Tunnelling (2000), Recommendations and guidelines for tunnel boring machines (TBMs), pp. I-22-I-34.
  4. Itasca Consulting Group Inc. (1999), PFC2D particle flow code in 2 dimensions, Minneapolis, Itasca.
  5. Itasca Consulting Group Inc. (2002), FLAC3D fast lagrangian analysis of continua in 3 dimensions, Minneapolis, Itasca.
  6. Japan Electric Power Civil Engineering Association (2001), Construction case investigation by TBM construction method, Japan Electric Power Construction Industry Association.
  7. Jeong, H.Y., Zhang, N., Jeon, S.W. (2018), "Review of technical issues for shield TBM tunneling in difficult grounds", Korean Society for Rock Mechanics, Vol. 28, No. 1, pp. 1-24.
  8. Jun, G.C., Kim, D.H. (2016), "A intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 3, pp. 273-282. https://doi.org/10.9711/KTAJ.2016.18.3.273
  9. Lee, S.W., Jang, S.H., Choi, S.W. (2011), "Prediction of future demand for domestic TBM tunnels", Geotechnical Engineering, Vol. 27, No. 2, pp. 18-26.
  10. The Support Pressure Calculator for TBM Tunnelling Home Page, http://www.facesupport.org (March 7, 2020).