DOI QR코드

DOI QR Code

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite

사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법

  • Kang, Kyung-Nam (Dept. of Civil Engineering, Inha University) ;
  • Song, Ki-Il (Dept. of Civil Engineering, Inha University) ;
  • Kim, Sun Gil (Civil Infrastructure Research Division, Kolon Global Corporation) ;
  • Kim, Kyoung Chul (Civil Infrastructure Research Division, Kolon Global Corporation)
  • 강경남 (인하대학교 토목공학과) ;
  • 송기일 (인하대학교 토목공학과) ;
  • 김선길 (코오롱글로벌 기술연구소) ;
  • 김경철 (코오롱글로벌 기술연구소)
  • Received : 2020.01.14
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

NATM 공법에 있어서 강지보재는 숏크리트가 타설되어 라이닝을 완전히 구성할 때까지 터널의 안정화를 확보하는 구조체로서, 숏크리트의 타설 전 뿐만 아니라 타설 후 숏크리트와의 일체 거동을 통해 라이닝의 강도를 더해주는 역할을 수행한다. 본 연구에서는 새로운 형식의 사변형 격자지보재를 터널의 안정해석에 적용하기 위한 방안으로 체적비 기반의 숏크리트와 강지보재 합성부재의 등가 물성치 결정법을 제시하였다. 사변형 격자지보재는 수직 및 수평 보강재의 존재로 면적비 기반으로 등가 물성치를 산정할 경우 선택한 단면에 따라 물성치가 상이 할 수 있다. 따라서 본 연구에서는 체적비 기반의 등가 물성치 결정법을 제시하였으며, 격자지보재와 숏크리트로 구성된 합성부재 요소에 대한 상세모델과 등가물성치를 사용한 등가모델의 비교를 통하여 등가탄성계수를 보정할 수 있는 방법을 제시하였다. 상세모델과 등가모델을 비교한 결과등가모델은 상세모델에 비해 평균적으로 130% 작은 휨 강도를 나타내었다. 본 연구에서는 휨강도의 오차율을 고려하여 등가탄성계수를 보정할 수 있는 방법을 제시하였고, 보정된 등가탄성계수를 적용한 등가모델의 휨강도는 상세모델과 평균오차율 1% 이내로 나타났다.

Keywords

References

  1. ACI Committee 318 (1999), Building code requirements for reinforced concrete (ACI318-99), American Concrete Institute.
  2. Ha, T.W., Kim, D.Y., Shin, Y.W., Yang, H.S. (2008), "Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 269-282.
  3. Jung, H.S., Shin, Y.W., Song, K.I., Shin, J.H. (2016), "Performance evaluation of lattice girder depending on the quality of steel", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 2, pp. 165-173. https://doi.org/10.9711/KTAJ.2016.18.2.165
  4. KICT (1996), Application of lattice girders in tunneling, Korea Institute of Civil Engineering and Building Technology.
  5. Kim, D.G., Bae, G.J. (2008), "Development of a laboratory testing method for evaluating the loading capability of lattice girder", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 4, pp. 371-382.
  6. Kim, D.G., Bae, G.J., Kim, D.R., Choi, Y.H. (2007), "Loading capacity of lattice girders in material property", Proceedings of the KSCE 2007 Civil Expo Korean Society of Civil Engineers, Daegu, pp. 1076-1079.
  7. Kim, D.G., Lee, S.H., Choi, Y.N. (2008), "Evaluation of loading capacity of lattice girder according to laboratory testing method", Proceedings of the Korean Geo-Environmental Society, Seoul, pp. 399-406.
  8. Kim, D.G., Lee, S.H., Kim, N.Y. (2009), "Status and capacity of lattice girder", Proceedings of the Korean Geo-Environmental Society, Seoul, pp. 374-380.
  9. Kim, H.J., Song, K.I., Jung, H.S., Shin, Y.W., Shin, J.H. (2018), "Performance evaluation of lattice girder and significance of quality control", Tunnelling and Underground Space Technology, Vol. 82, pp. 482-492. https://doi.org/10.1016/j.tust.2018.08.058
  10. Kim, S.J., Han, T.H., Baek, J.S., Kang, Y.J. (2013), "Evaluation of the structural performance of tetragonal lattice girders", International Journal of Steel Structures, Vol. 13, No. 1, pp. 31-47. https://doi.org/10.1007/s13296-013-1004-y
  11. KS F 2408 (2016), Standard test method for flexural strength of concrete, National Institute of Technology and Standards, Korea.
  12. MOLIT (2011), The revision of the road-design guideline (the chapter of tunnel), Ministry of Land, Transport and Maritime Affairs.
  13. Moon, H.D., Paik, Y.S., Bae, G.J. (1997), "An experimental study on the characteristics of a composite structure of lattice girder and shotcrete", Geotechnical Engieering, Vol. 13, No. 2, pp. 155-168.
  14. Raphael, J.M. (1984), "Tensile strength of concrete", ACI Journal, Vol. 81, No. 2, pp. 158-165.
  15. Yoo, C.S., Kim, Y.J., Bae, G.J., Moon, H.D. (1997), "An experimental study on load bearing capacity of lattice girder as a steel support in tunnelling", Journal of the Korean Geotechnical Society, Vol. 13, No. 4, pp. 163-175.