DOI QR코드

DOI QR Code

Large scale enzymatic production of chitooligosaccharides and their biological activities

키토산올리고당의 효소적 대량생산 및 생리활성

  • Kim, Se-Kwon (Dept. of Marine Science & Convergence Engineering College of Science & Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Dept. of Marine Science & Convergence Engineering College of Science & Technology, Hanyang University)
  • 김세권 (한양대학교 과학기술융합대학 해양과학융합공학과) ;
  • 신경훈 (한양대학교 과학기술융합대학 해양과학융합공학과)
  • Received : 2020.02.14
  • Accepted : 2020.03.11
  • Published : 2020.03.31

Abstract

In recent years, significant importance has been given to chitooligosaccharides (COS) due to its potent notable biological applications. COS can be derived from chitosan which is commonly produced by partially hydrolyzed products from crustacean shells. In order to produce COS, there are several approaches including chemical and enzymatic methods which are the two most common choices. In this regard, several new methods were intended to be promoted which use the enzymatic hydrolysis with a lower cost and desired properties. Hence, the dual reactor system has gained more attention than other newly developed technologies. Enzymatic hydrolysis derived COS possesses important biological activities such as anticancer, antioxidant, anti-hypersentive, anti-dementia (Altzheimer's disease), anti-diabeties, anti-allergy, anti-inflammatory, etc. Results strongly suggest that properties of COS can be potential materials for nutraceutical, pharmaceutical, and cosmeceutical product development.

키토산은 천연에 존재하는 풍부한 고분자 다당류이며 동시에 항균작용, 항암작용, 면역 활성 증강 작용 등 다양한 생리 기능성을 가진 생체 물질(biomaterial)이다. 그러나 키토산은 수용액에 쉽게 용해되지 않고 체내 흡수율도 매우 낮은 고분자 물질이기 때문에 그 자체로는 생체 내에서 기능을 발휘하지 못한다. 따라서 체내 흡수율이 용이하고 보다 다양한 생리 활성을 나타내는 키토산올리고당으로 섭취할 필요가 있다. 키토산으로부터 키토산올리고당을 만드는 방법은 온화한 조건에서 부반응이 없는 효소분해가 가장 이상적이다. 그러나 키토산을 분해시킬 수 있는 효소의 가격이 매우 비싸고 효소 활성이 낮아 산업적으로 효소를 이용하여 키토산올리고당을 대량 생산하는데는 경제적으로 큰 문제가 있었다. 따라서 효소 분해에 의한 키토산올리고당의 생산을 산업적으로 적용시켰을 때 대량으로 소모되는 효소의 높은 생산 비용을 경감하기 위하여 효소의 재이용을 위한 생산 시스템을 도입하였고 한외여과막과 효소 반응기를 결합시킨 한외여과막 효소반응기를 키토산올리고당의 생산에 적용시킴으로써 대량 생산이 가능해졌다. 이 시스템은 사용하는 막의 종류에 따라 원하는 분자량의 키토산올리고당을 생산 할 수 있어 분자량 크기에 따라 생체 내에서 다른 생리기능을 나타내는 키토산올리고당을 각기 목적에 맞는 제품으로 대량 생산할 수 있다. 키토산올리고당은 암세포 성장에 영향을 미치는 면역을 증진시키고 암 전이 관련 효소인 MMP-2 및 MMP-9의 발현을 저지하여 암 전이를 억제할 뿐만 아니라 암세포의 신생 혈관형성을 억제하므로 암의 예방이나 치료에 활용될 수 있다. 또한 키토산올리고당은 생체 노화를 촉진시키는 초과산화 라디칼, 히드록시라디칼, 과산화 라디칼과 같은 활성산소종을 소거시킴으로써 활성산소종에 의해 유발되는 질환도 예방한다. 더 나아가서, 키토산올리고당은 양전하를 가진 아미노기를 갖고 있어 미생물 세포막의 음전하와 결합하여 세포막의 기능을 상실시킴으로써 막을 통해 출입하는 대사에 필요한 물질들을 봉쇄한다. 이것은 미생물의 성장과 증식을 감소시키는 효과가 있어 식품분야에서도 천연 보존제로서 활용될 것으로 기대된다. 지금까지 고혈압 및 심장 질환의 치료는 레닌엔지오텐신 시스템(RAS)경로의 치료조작(mani pulator) 및 ACE 저해에 초점이 맞추어져 왔다. Captopril, Enalapril, Alcacepril 및 Lisinopril같은 합성 ACE 저해제는 고혈압 치료 및 예방을 위해서도 널리 사용되고 있으나 기침, 알레르기 반응, 맛 장애 및 피부발진과 같은 부작용을 야기시킬 위험이 있다. 그러므로 고혈압의 치료나 관리를 위한 치료제로서 자연계에 존재하는 천연성분인 키토산올리고당이 바람직한 대안으로 사용될 수 있을 것이다. 고령 사회로 진입하면서 노인의 치매 발병률은 현저하게 증가하는 추세이나 아직까지 효과가 뛰어난 치매치료제는 개발되지 않고 있는 실정이다. 키토산올리고당이 치매유발효소인 베타-세크레테이즈뿐만 아니라 아세틸콜린 에스테르가수분해효소를 저해하고, 산화에 의한 뇌세포의 손상을 저해하는 효능이 있는 것으로 밝혀져 앞으로 치매 예방이나 치료에 적극적으로 활용되어야 한다. 최근에 소비자나 환자들은 다양한 부작용을 낳는 화학적으로 합성된 의약품을 기피하는 경향이 있어 자연식품이나 천연 생리기능성 물질과 자가치료에 대한 욕구가 높아지고 있다. 그러므로 의약품에 비해 다소 효능이 낮을지라도 특정한 질병의 예방이나 치료를 위해 특수한 생리 기능성 물질의 섭취는 더욱 더 인기를 끌게 될 것이다. 따라서 항암, 항산화, 항염증, 항균, 항고혈압, 항치매, 항당뇨, 항알레르기 등 다양한 생리활성을 나타내는 키토산올리고당을 활용한 건강기능성식품(nutraceuticals), 의약품(pharmaceuticals) 및 기능성 화장품(cosmeceuticals) 등 다양한 제품이 개발될 것으로 기대된다.

Keywords

References

  1. Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8: 1482-1517 (2010) https://doi.org/10.3390/md8051482
  2. Ahmad FJ, Akhter S, Ahmad MZ, Ramazani F, Samim M, Warsi MH, Anwar M, Rahman Z. Prospective Corollary of Ophthalmic Nanomedicine: A Concept Shift toward Chitosan-Based Mucoadhesive Nanomedicine. pp.317-336. In: Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. Kim SK (ed). CRC Press. NY, USA (2014)
  3. Allan CR, Hadwiger LE. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol. 3: 285-287 (1979) https://doi.org/10.1016/S0147-5975(79)80054-7
  4. Amako K, Shimodori S, Imoto T, Miake S, Umeda A. Effects of chitin and its soluble derivatives on survival of Vibrio cholerae O1 at low temperature. Appl. Environ. Microbiol. 53: 603-605 (1987) https://doi.org/10.1128/AEM.53.3.603-605.1987
  5. Anraku M, Fujii T, Kondo Y, Kojima E, Hata T, Tabuchi N, Tsuchiya D, Goromaru T, Tsutsumi H, Kadowaki D, Maruyama T, Otagiri M, Tomida H. Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo. Carbohydr. Polym. 83: 501-505 (2011) https://doi.org/10.1016/j.carbpol.2010.08.009
  6. Assis CF, Araujo NK, Pagnoncelli MGB, Pedrini MR, Macedo GR, Santos ES. Chitooligosaccharides enzymatic production by Metarhizium anisopliae. Bioprocess Biosyst. Eng. 33: 893-899 (2010) https://doi.org/10.1007/s00449-010-0412-z
  7. Bahar B, O'Doherty JV, Maher S, McMorrow J, Sweeney T. Chitooligosaccharide elicits acute inflammatory cytokine response through AP-1 pathway in human intestinal epithelial-like (Caco-2) cells. Mol. Immunol. 51: 283-291 (2012) https://doi.org/10.1016/j.molimm.2012.03.027
  8. Byun HG, Kim SK. Structure and activity of angiotensin I-converting enzyme inhibitory peptides derived from Alaskan pollack skin. BMB Reports. 35: 239-243 (2002) https://doi.org/10.5483/BMBRep.2002.35.2.239
  9. Byun HG, Kim YT, Park PJ, Lin X, Kim SK. Chitooligosaccharides as a novel $\beta$-secretase inhibitor. Carbohydr. Polym. 61: 198-202 (2005) https://doi.org/10.1016/j.carbpol.2005.05.003
  10. Cabrera JC, Cutsem PV. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem. Eng. J. 25: 165-172 (2005) https://doi.org/10.1016/j.bej.2005.04.025
  11. Castro LF, Mengibar M, Sanchez A, Arroyo L, Villaran MC, de Apodaca ED, Heras A. Films of chitosan and chitosanoligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities. LWT. 73: 368-374 (2016) https://doi.org/10.1016/j.lwt.2016.06.038
  12. Chae SY, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release. 102: 383-394 (2005) https://doi.org/10.1016/j.jconrel.2004.10.012
  13. Cho EJ, Rahman A, Kim SW, Baek YM, Hwang HJ, Oh JY, Hwang HS, Lee SH, Yun JW. Chitosan oligosaccharidesinhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol. Biotechnol. 18: 80-87 (2008)
  14. Cho SY, Lee JH, Song MJ, Park PJ, Shin ES, Sohn JH, Seo DB,Lim KM, Kim WG, Lee SJ. Effects of chitooligosaccharide lactate salt on sleep deprivation-induced fatigue in mice. Biol. Pharm. Bull. 33: 1128-1132 (2010) https://doi.org/10.1248/bpb.33.1128
  15. Cho YS, Kim SK, Ahn CB, Je JY. Inhibition of acetylcholinesterase by gallic acid-grafted-chitosans. Carbohydr. Polym. 84: 690-693 (2011) https://doi.org/10.1016/j.carbpol.2010.12.040
  16. Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. of Antimicrob. Ag. 18: 553-557 (2001) https://doi.org/10.1016/S0924-8579(01)00434-4
  17. Chung MJ, Park JK, Park YI. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int. Immunopharmacol. 12: 453-459 (2012) https://doi.org/10.1016/j.intimp.2011.12.027
  18. Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21: 703-714 (2004) https://doi.org/10.1016/j.fm.2004.02.008
  19. Domard A, Cartier N. Glucosamine oligomers: 4. Solid state-crystallization and sustained dissolution. Int. J. Biol. Macromol. 14: 100-106 (1992) https://doi.org/10.1016/0141-8130(92)90006-T
  20. Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Qiu Y. Key technologies of enzymatic preparation for DP 6-8 chitooligosaccharides. J. Food Process Eng. 38: 336-344 (2015) https://doi.org/10.1111/jfpe.12159
  21. Einbu A, Varum KM. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromol. 8: 309-314 (2007) https://doi.org/10.1021/bm0608535
  22. El-Sayed ST, Ali AM, El-Sayed EM, Shousha WG, Omar NI. Characterization and potential antimicrobial effect of novel chitooligosaccharides against pathogenic microorganisms. J. Appl. Pharm. Sci. 7: 6-12 (2017)
  23. Elsabee MZ, Morsi RE. Chitosan: Amazing Controlled Delivery System. Pp261-302 In: Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. Kim SK(Ed.) CRC Press. USA (2014)
  24. Fawzya YN, Rahmawati A, Patantis G. Physicochemical properties of chitooligosaccharide prepared by using chitosanase from Stenotrophomonas maltophilia KPU 2123. IOP Conf. Ser. Earth Environ. Sci. 139: 1-8 (2018)
  25. Fernandes JC, Borges M, Nascimento H, Rocha EB, Ramos OS, Pintado ME, Malcata X, Silva AS. Cytotoxicity and genotoxicity of chitooligosaccharides upon lymphocytes. Int. J. of Biol Macromol. 49: 433-438 (2011) https://doi.org/10.1016/j.ijbiomac.2011.05.032
  26. Fernandes JC, Eaton P, Franco I, Ramos OS, Sousa S, Nascimento H, Gomes A, Silva AS, Malcata FX, Pintado, ME. Evaluation of chitoligosaccharides effect upon probiotic bacteria. Int. J. of Biol. Macromol. 50: 148-152 (2012) https://doi.org/10.1016/j.ijbiomac.2011.10.011
  27. Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Monteiro MJ, Pintado ME, Malcata FX. Antimicrobial effects of chitosans and chitooligosaccharides upon Staphylococcus aureus and Escherichia coli in food model systems. Food Microbiol. 25: 922-928 (2008) https://doi.org/10.1016/j.fm.2008.05.003
  28. Fischer TH, Bode AP, Demcheva M, Vournakis JN. Hemostatic properties of glucosamine‐based materials. J. Biomed. Mater. Res. A. 80. 167-174 (2007)
  29. Gao XA, Zhang YF, Park RD, Huang X, Zhao XY, Xie J, Jin RD.. Preparation of chitooligosaccharides from chitosan using crude enzyme of Bacillus cereus D-11. J. Appl. Biol. Chem. 55: 13-17 (2012) https://doi.org/10.3839/jabc.2011.053
  30. Gong Y, Gong L, Gu X, Ding F. Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peroneal nerve crush injury model. Microsurgery. 29 650-656 (2009) https://doi.org/10.1002/micr.20686
  31. Han FS, Cui BH, You XF, Xing YF, Sun WX. Anti-proliferation and radiosensitization effects of chitooligosaccharides on human lung cancer line HepG2. Asian Pac. J. Trop. Med. 8: 757-761 (2015) https://doi.org/10.1016/j.apjtm.2015.07.025
  32. Han FS, Yang SJ, Lin MB, Chen YQ, Yang P, Xu JM. Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World Gastroenterol. 22: 5193 (2016) https://doi.org/10.3748/wjg.v22.i22.5193
  33. Hong S, Ngo DN, Kim MM. Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells. Environ. Toxicol. Pharmacol. 45: 309-314. (2016) https://doi.org/10.1016/j.etap.2016.06.013
  34. Huang R, Mendis E, Kim SK. Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification. Bioorgan. Med. Chem. 13: 3649-3655 (2005) https://doi.org/10.1016/j.bmc.2005.03.034
  35. Huang R, Mendis E, Rajapakse N, Kim SK. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci. 78: 2399-2408 (2006) https://doi.org/10.1016/j.lfs.2005.09.039
  36. Huang R, Rajapakse N, Kim SK. Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr. Polym. 63: 122-129 (2006) https://doi.org/10.1016/j.carbpol.2005.08.022
  37. Il'ina AV, Varlamov VP. In vitro antitumor activity of heterochitooli gosaccharides. Appl. Biochem. Microbiol. 51: 1-10 (2015) https://doi.org/10.1134/S0003683815010068
  38. Jauch-Chara K, Oltmanns KM. Obesity-a neuropsychological disease? Systematic review and neuropsychological model. Prog. in Neurobiol. 114: 84-101 (2014) https://doi.org/10.1016/j.pneurobio.2013.12.001
  39. Je JY, Kim EK, Ahn CB, Moon SH, Jeon BT, Kim B, Park TK, Park PJ. Sulfated chitooligosaccharides as prolyl endopeptidase inhibitor. Int. J. Biol. Macromol. 41: 529-533 (2007) https://doi.org/10.1016/j.ijbiomac.2007.07.003
  40. Je JY, Kim SK. Chitosan and Its Derivatives: Potential Use as Nutraceuticals. pp. 259-266. In: Marine Nutraceuticals: Prospects and Perspectives. Kim SK(ed.) CRC Press. USA (2013)
  41. Jeon YJ, Kim SK. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbiol. Biotechnol. 12: 503-507 (2002)
  42. Jeon YJ, Kim SK. Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem. 35: 623-632 (2000) https://doi.org/10.1016/S0032-9592(99)00118-1
  43. Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133-141 (2000) https://doi.org/10.1016/S0144-8617(99)00084-3
  44. Jeon YJ, Park PJ, Byun HG, Kim SK, Song BK. Production of chitosan oligosaccharides using chitin-immobilized enzyme. Korean J. Biotechnol. Bioeng. 13: 147-154 (1998)
  45. Jing B, Cheng G, Li G, Wang ZA Du Y. Inhibition of liver tumor cell metastasis by partially acetylated chitosan oligosaccharide on a tumor-vessel microsystem. Mar. Drugs 17: 415 (2019) https://doi.org/10.3390/md17070415
  46. Joodi G, Ansari N, Khodagholi F. Chitooligosaccharide-mediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. Int. J. Biol. Macromol. 48: 726-735 (2011) https://doi.org/10.1016/j.ijbiomac.2011.02.011
  47. Ju,C., Wue, W., Yang,Z., Zhang,Q., Yang.X., Liu,Z., Zhang,F. Antidiabetic effect and mechanism of chitooligosaccharides. Biol. Pharm. Bull. 33: 1514-1516 (2010)
  48. Jung WK, Moon SH, Kim SK. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci. 78: 970-976 (2006) https://doi.org/10.1016/j.lfs.2005.06.006
  49. Kang L, Jiang S, Ma L. Enzymatic production of high molecular weight chitooligosaccharides using recombinant chitosanase from Bacillus thuringiensis BMB171. Microbiol. Biotech. Lett. 46: 45-50 (2018) https://doi.org/10.4014/mbl.1712.12012
  50. Karadeniz F, Artan M, Kong CS, Kim SK. Chitooligosaccharides protect pancreatic $\beta$-cells from hydrogen peroxide-induced deterioration. Carbohydr. Polym. 82: 143-147 (2010) https://doi.org/10.1016/j.carbpol.2010.04.046
  51. Katiyar D, Singh B, Lall AM, Haldar C. Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: A correlative study with antihyperlipidemic and antioxidative activity. Eur. J. of Pharm. Sci. 44: 534-543 (2011) https://doi.org/10.1016/j.ejps.2011.09.015
  52. Katiyar DM, Singh B, Lall AM, Haldar C. Evaluation of antidiabetic and hypolipidemic activity of chitooligosaccharides in alloxan-induced diabetes mellitus in mice. Int. J. Pharma. Bio. Sci. 2: 407-416 (2011)
  53. Kendra DF, Hadwiger LA. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8: 276-281 (1984) https://doi.org/10.1016/0147-5975(84)90013-6
  54. Kim EK, Je JY, Lee SJ, Kim YS, Hwang JW, Sung SH, Jeon BT, Kim SK, Jeon YJ, Park PJ. Chitooligosaccharides induce apoptosis in human myeloid leukemia HL-60 cells. Bioorg. Med. Chem. Lett. 22: 6136-6138 (2012) https://doi.org/10.1016/j.bmcl.2012.08.030
  55. Kim HM, Hong SH, Yoo SJ, Baek KS, Jeon YJ, Choung SY. Differential effects of chitooligosaccharides on serum cytokine levels in aged subjects. J. Med. Food. 9: 427-430 (2006) https://doi.org/10.1089/jmf.2006.9.427
  56. Kim JA, Ahn BN, Kong CS, Kim SK. Chitooligomers inhibit UV-A-induced photoaging of skin by regulating TGF-$\beta$/Smad signaling cascade. Carbohydr. Polym. 88: 490-495 (2012) https://doi.org/10.1016/j.carbpol.2011.12.032
  57. Kim JA, Ahn BN, Kong CS, Park SH, Park BJ, Kim SK. Antiphotoaging effect of chitooligosaccharides on human dermal fibroblasts. Photodermatol. Photoimmunol. Photomed. 28: 299-306 (2012) https://doi.org/10.1111/phpp.12004
  58. Kim MM, Kim SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase‐2 in human dermal fibroblasts. FEBS Lett. 580: 2661-2666 (2008) https://doi.org/10.1016/j.febslet.2006.04.015
  59. Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357-368 (2005) https://doi.org/10.1016/j.carbpol.2005.08.012
  60. Kim SK. Chitosan oligosaccharide : allergy and marine algae. In: Healthcare Using Marine Organisms. CRC Press, NY, USA, pp. 133-135 (2018)
  61. Kim SK. Chitosan oligosaccharide : Alzheimer dementia and chitosan oligosaccharides. In: Healthcare Using Marine Organisms. CRC Press, NY, USA, pp. 71-75 (2018)
  62. Kim SK. Chitosan oligosaccharide : anti-aging. In: Healthcare Using Marine Organisms. CRC Press, NY, USA, pp. 28-35 (2018)
  63. Kim SK. Chitosan oligosaccharide : anticancer activity. In: Healthcare Using Marine Organisms. CRC Press, NY, USA, pp. 20-28 (2018)
  64. Kim SK. Chitosan oligosaccharide : Fisheries products and hypertension. In: Healthcare Using Marine Organisms. CRC Press, NY, USA, pp. 175-183 (2018)
  65. Kim SK. Preface. In: Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. CRC Press. NY, USA, p. 6 (2011)
  66. Kim SK. Utilization of chitin as artificial skin. In: Healthcare Using Marine Organisms. CRC press, NY, USA, pp. 47-52 (2018)
  67. Kim SK. What are chitin, chitosan, water-soluble chitosan, and chitosan oligosaccharides? In: Healthcare Using Marine Organisms, CRC Press, NY, USA pp. 7-12 (2018)
  68. Kittur FS, Kumar ABV, Varadaraj MC, Tharanathan RN. Chitooligosaccharides-preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydr. Res. 340: 1239-1245 (2005) https://doi.org/10.1016/j.carres.2005.02.005
  69. Kong CS, Kim JA, Ahn B, Byun HG, Kim SK. Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochem. 45: 179-186 (2010) https://doi.org/10.1016/j.procbio.2009.09.004
  70. Kong XF, Zhou XL, Lian GQ, Blachier F, Liu G, Tan BE, Nyachoti CM, Yin YL. Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livestock Sci. 160: 97-101 (2014) https://doi.org/10.1016/j.livsci.2013.11.023
  71. Lee DX, Xia WS, Zhang JL. Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chem. 111: 291-295 (2008) https://doi.org/10.1016/j.foodchem.2008.03.054
  72. Lee HW, Park YS, Choi JW, Yi SY, Shin WS. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull. 26: 1100-1103 (2003) https://doi.org/10.1248/bpb.26.1100
  73. Lee SH, Park JS, Kim SK, Ahn CB, Je JY. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by $A{\beta}25-35$ in PC12 cells. Bioorg. Med. Chem. Lett. 19: 860-862 (2009) https://doi.org/10.1016/j.bmcl.2008.12.019
  74. Li H, Huang L and Chen L. Chitooligosaccharides inhibit a 549 lung cancer cell line proliferation by regulating cell autophagy. J. Biol. Reg. Homeos. Ag. 33: 1527-1532. (2019)
  75. Li X, Wang J, Chen X, Tian J, Li L, Zhao M, Zhou C. Effect of chitooligosaccharides on cycline D1, bcl-xl and bcl-2 mRNA expression in A549 cells using quantitative PCR. Chin. Sci. Bull. 56: 1629-1632 (2011)
  76. Li Y, Chen L, Liu Y, Zhang Y, Liang Y, Mei Y. Anti-inflammatory effects in a mouse osteoarthritis model of a mixture of glucosamine and chitooligosaccharides produced by bi-enzyme single-step hydrolysis. Sci. Rep. 8: 1-9 (2018) https://doi.org/10.1038/s41598-017-17765-5
  77. Lin CW, Lin JC. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method. Biomacromol. 4: 1691-1697 (2003) https://doi.org/10.1021/bm034129n
  78. Lin F, Zhang TY. Spectra analyses of chitosans degraded by hydrogen peroxide under optimal conditions. Spectrosc. Spect. Anal. 29: 43-47 (2009) https://doi.org/10.3964/j.issn.1000-0593(2009)01-0043-05
  79. Liotta LA, Rao CN, Barsky SH. Tumor invasion and the extracellular matrix. Lab. Investig. 49: 636-649 (1983)
  80. Liu B, Liu W, Han B, Wang C. Effect of chitooligosaccharides on protecting pancreatic B cell and its antioxidant ability in vivo. Gaojishu Tongxim/Chin. High Technol. Lett. 17: 968-973 (2007)
  81. Liu B, Liu WS, Han BQ, Sun YY. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J. Gastroenterol. 13: 725 (2007) https://doi.org/10.3748/wjg.v13.i5.725
  82. Liu B, Qin ZK, Lin XM, Mei L., Liu WS, Han BQ. Promotion effect of chitooligosaccharides and its derivatives on pancreatic islet cells proliferation and insulin secretion. J. Clin. Rehabilitative Tissue Eng. Res. 13: 513-516 (2009)
  83. Loke A. Diabetes. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes. Feb. 27, 2020.
  84. Long T, Yu J, Wang J, Liu J, He BS. Orally administered chitooligosaccharides modulate colon microbiota in normal and colitis mice. Int. J. Pharmacol. 14: 291-300 (2018) https://doi.org/10.3923/ijp.2018.291.300
  85. Luo Y, Deng L, Deng QJ, Wen L. Comparative study of the chitooligosaccharides effect on the proliferation inhibition and radiosensitization of three types of human gastric cancer cell line. Asian Pac. J. Trop. Med. 9: 601-605 (2016) https://doi.org/10.1016/j.apjtm.2016.04.014
  86. Luo Z, Dong X, Ke Q, Duan Q, Shen L. Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation. Oncol. Rep. 32: 2215-2222 (2014) https://doi.org/10.3892/or.2014.3463
  87. Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Mitsuoka T. Hypocholesterolemic effect of chitosan in adult males. Biosci., Biotechnol. Biochem. 57 1439-1444 (1993) https://doi.org/10.1271/bbb.57.1439
  88. Mei YX, Chen HX, Zhang J, Zhang XD, Liang YX. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int. J. Biol. Macromol. 62: 330-335 (2013) https://doi.org/10.1016/j.ijbiomac.2013.09.038
  89. Mendis E, Kim MM, Rajapakse N, Kim SK. An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci. 80: 2118-2127 (2007) https://doi.org/10.1016/j.lfs.2007.03.016
  90. Mendis E, Kim MM, Rajapakse N, Kim SK. Carboxy derivatized glucosamine is a potent inhibitor of matrix metalloproteinase-9 in HT1080 cells. Bioorg. Med Chem. Lett. 16: 3105-3110 (2006) https://doi.org/10.1016/j.bmcl.2006.03.077
  91. Moriano PS, Kidibule PE, Alleyne,E, Ballesteros AO, Heras A, Lobato M, Plou FJ. Efficient conversion of chitosan into chitooligosaccharides by a chitosanolytic activity from Bacillus thuringiensis. Process Biochem. 73: 102-108 (2018) https://doi.org/10.1016/j.procbio.2018.07.017
  92. Moriano PS, Woodley JM, Plou FJ. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. J. Mol. Catal. B: Enzymatic. 133: 211-217 (2016) https://doi.org/10.1016/j.molcatb.2016.09.001
  93. Morris VB, Neethu S, Abraham TE, Pillai CKS, Sharma CP. Studies on the condensation of depolymerized chitosans with DNA for preparing chitosan‐DNA nanoparticles for gene delivery applications. J. Biomed. Mater. Res. B Appl. Biomater. 89: 282-292 (2009)
  94. Nam K, Kim M, Shon Y. Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. J. Microbiol. Biotechnol. 17: 2042 (2007)
  95. Ngo DH, Vo TS, Ngo DN, Kang KH, Je JY, Pham HN, Byun HG, Kim SK. Biological effects of chitosan and its derivatives. Food Hydrocoll. 51: 200-216 (2015) https://doi.org/10.1016/j.foodhyd.2015.05.023
  96. Ngo DN, Kim MM, Kim SK. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr. Polym. 74: 228-234 (2008) https://doi.org/10.1016/j.carbpol.2008.02.005
  97. Ngo DN, Lee SH, Kim MM, Kim SK. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Func. Foods 1: 188-198 (2009) https://doi.org/10.1016/j.jff.2009.01.008
  98. Nishimura K, Ishihara C, Ukei S, Tokura S, Azuma I. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine 4: 151-156 (1986) https://doi.org/10.1016/0264-410X(86)90002-2
  99. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. I. J. Food Microbiol. 74: 65-72 (2002) https://doi.org/10.1016/S0168-1605(01)00717-6
  100. Oh SH, Vo TS, Ngo DH, Kim SY, Ngo DN, Kim SK. Prevention of $H_2O_2$-induced oxidative stress in murine microglial BV-2 cells by chitin-oligomers. Process Biochem. 51: 2170-2175 (2016) https://doi.org/10.1016/j.procbio.2016.08.015
  101. Ohara N, Hayashi Y, Yamada S, Kim SK, Matsunaga T, Yanagiguchi K, Ikeda T. Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 25: 1749-1754 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.022
  102. Okuda H, Kato H, Tsujita T. Antihypertensive and antihyperlipemic actions of chitosan. J. Chitin Chitosan 2: 49-59 (1997)
  103. Park JK, Chung MJ, Choi HN and Park YI. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. of Molecular Sci. 12: 266-277 (2011) https://doi.org/10.3390/ijms12010266
  104. Park PJ, Ahn CB, Jeon YJ, Je JY. Renin inhibition activity by chitooligosaccharides. Bioorg. Med. Chem. lett. 18: 2471-2474 (2008) https://doi.org/10.1016/j.bmcl.2008.02.041
  105. Park PJ, Je JY, Kim SK. Angiotensin I-converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. J. Agric. Food Chem. 51: 4930-4934 (2003) https://doi.org/10.1021/jf0340557
  106. Qian L, Chen L. Immune protective effects of chitooligosaccharides on mice genital tract infected by Chlamydia trachomatis. Am. J. Reprod. Immunol. 79: e12815 (2018) https://doi.org/10.1111/aji.12815
  107. Qian ZJ, Eom TK, Ryu BM, Kim SK. Angiotensin I-converting enzyme inhibitory activity of sulfated chitooligosaccharides with different molecular weights. J. Chitin Chitosan. 15: 75-79 (2010)
  108. Quan H, Xu Z. Hypotheses: A New Way Against Cancer Metastasis, Chitooligosaccharides as Mucosal Adjuvant for Therapeutic Vaccination Targeting Heparanase. J. Anim. Vet. Adv. 11: 2788-2791 (2012) https://doi.org/10.3923/javaa.2012.2788.2791
  109. Quan H, Zhu F, Han X, Xu Z, Zhao Y, Miao Z. Mechanism of anti-angiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity. Med. Hypotheses. 73 205-206 (2009) https://doi.org/10.1016/j.mehy.2009.02.018
  110. Rajapakse N, Kim MM, Mendis E, Huang R and Kim SK. Carboxylated chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via down-regulation of AP-1. Biochim. Biophys. Acta 1760: 1780-1788 (2006) https://doi.org/10.1016/j.bbagen.2006.08.021
  111. Ratanavaraporn J, Kanokpanont S, Tabata Y, Damrongsakkul S. Growth and osteogenic differentiation of adipose-derived and bone marrow-derived stem cells on chitosan and chitooligosaccharide films. Carbohydr. Polym. 78: 873-878 (2009) https://doi.org/10.1016/j.carbpol.2009.07.006
  112. Ryu B, Himaya SWA, Napitupulu RJ, Eom TK, Kim SK. Sulfated chitooligosaccharide II (SCOS II) suppress collagen degradation in TNF-induced chondrosarcoma cells via $NF-{\kappa}B$ pathway. Carbohydr. Res., 350: 55-61 (2012). https://doi.org/10.1016/j.carres.2011.12.028
  113. Ryu B, Kim SY, Vo TS, Kim WS, Kim DG and Kim SK. Characterization of the in vitro effects of gallic acid-grafted-chitooligosaccharides in the suppression of AGS human gastric cancer cell proliferation. RSC Adv. 7: 24561-24568 (2017) https://doi.org/10.1039/C7RA02487H
  114. Sato K, Saimoto H, Morimoto M, Shigemasa Y. Depolymerization of chitin and chitosan under hydrothermal conditions. Sen-I Gakkaishi. 59: 104-109 (2003) https://doi.org/10.2115/fiber.59.104
  115. Senevirathne M, Ahn CB, Kim SK,Je JY. pp. 169-178 Cosmeceutical Applications of Chitosan and Its Derivatives. pp. 169-178. In: Marine Cosmeceuticals: Trends and Prospects. Kim SK (ed.) CRC Press. NY, USA (2012)
  116. Senevirathne, M, Ahn CB, Je JY. Hepatoprotective effect of chitooligosaccharides against tert-butylhydroperoxide-induced damage in Chang liver cells. Carbohydr. Polym. 83: 995-1000 (2011) https://doi.org/10.1016/j.carbpol.2010.09.016
  117. Setyahadi S. High-Density Chitin-Chitosan Production and Beneficial in Health. pp. 313-328. In: Marine Nutraceuticals: Prospects and Perspectives. Kim SK (ed.) CRC Press. NY, USA (2013)
  118. Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 47: 1864-1871 (2009) https://doi.org/10.1016/j.fct.2009.04.044
  119. Shimizu Y. Hypertension. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension. Feb. 27, 2020.
  120. Shimojoh M, Masaki K, Kurita K, Fukushima K. Bactericidal effects of chitosan from squid pens on oral streptococci. Nippon Nogei Kagakukaishi, 70: 787-792 (1996) https://doi.org/10.1271/nogeikagaku1924.70.787
  121. Simunek J, Brandysova V, Koppova I. The antimicrobial action of chitosan, low molar mass chitosan, and chitooligosaccharides on human colonic bacteria. Folia microbiol. 57: 341-345 (2012) https://doi.org/10.1007/s12223-012-0138-1
  122. Sugano M, Yoshida K, Hashimoto M, Enomoto K, Hirano S. Hypocholesterolemic activity of partially hydrolyzed chitosans in rats. Adv. Chitin Chitosan 11: 472-8 (1992)
  123. Sun YX, Liu T, Dai XL, Gao ZL, Wei R, Zheng QS, Jiang ZF. A study of the effect of chitooligosaccharides on cerebral ischemia/reperfusion in mice. Chin. Pharm. Bull. 26: 1180-1184 (2010)
  124. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res., 151: 403 (1986) https://doi.org/10.1016/S0008-6215(00)90359-8
  125. Ta QV, Kim MM, Kim SK. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080). Mar. Biotechnol. 8: 593-599 (2006) https://doi.org/10.1007/s10126-006-6031-7
  126. Tak HY, Lee, CM, Shim WG, Yoon SD. Preparation and Characterization of Chitosan-based Functional Biomaterials for the Sulindac Recognition. J. Chitin Chitosan 22: 162-170 (2017). https://doi.org/10.17642/jcc.22.3.4
  127. Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG. Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J. Am. Coll. Nutr. 27: 22-30 (2008) https://doi.org/10.1080/07315724.2008.10719671
  128. Teodoro JS, Gomes AP, Varela AT, Duarte FV, Rolo AP, Palmeira CM, Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats. Toxicol. Mech. Methods 26: 650-657 (2016) https://doi.org/10.1080/15376516.2016.1222643
  129. Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M. Growth inhibitory effect of hexa-N-acetylchitohexaose against Meth-A solid tumor. Chem. Pharm. Bull, 36: 784-790 (1988) https://doi.org/10.1248/cpb.36.784
  130. Van TQ, Kim MM, Kim SK. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080). Mar. Biotechnol. 8: 593-599. (2006) https://doi.org/10.1007/s10126-006-6031-7
  131. Venkatesan J, Lowe B, Anil S, Ealla KKR, Kim SK. Marine biopolymers in bone tissue repair and regeneration. pp. 401-414. In: Industrial Applications of Marine Biopolymers. Kim SK (ed.) CRC Press. NY, USA. (2017)
  132. Vo TS, Kim JA, Ngo DH, Kong CS, Kim SK. Protective effect of chitosan oligosaccharides against $Fc{\varepsilon}RI$-mediated RBL-2H3 mast cell activation. Process Biochem. 47: 327-330 (2012) https://doi.org/10.1016/j.procbio.2011.10.036
  133. Vo TS, Kong CS, Kim SK. Inhibitory effects of chitooligosaccharides on degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells. Carbohydr. Polym. 84: 649-655 (2011) https://doi.org/10.1016/j.carbpol.2010.12.046
  134. Vo TS, Ngo DH, Ta QV, Wijesekara I, Kong CS, Kim SK. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia. Cell. Immunol. 277: 14-21 (2012) https://doi.org/10.1016/j.cellimm.2012.06.005
  135. Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour. Technol. 99: 4386-4393 (2008) https://doi.org/10.1016/j.biortech.2007.08.035
  136. Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X. N-acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem. Biophys. Res. Commun. 357: 26-31 (2007) https://doi.org/10.1016/j.bbrc.2007.03.094
  137. Wei X, Chen W, Mao F, Wang Y. Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int. J. Biol. Macromol. 54: 71-75 (2013) https://doi.org/10.1016/j.ijbiomac.2012.10.022
  138. Wu H, Aam BB, Wang W, Norberg AL, Sorlie M, Eijsink VG, DuY. Inhibition of angiogenesis by chitooligosaccharides with specific degrees of acetylation and polymerization. Carbohydr. Polym. 89: 511-518 (2012) https://doi.org/10.1016/j.carbpol.2012.03.037
  139. Wu H, Yao Z, Bai X, Du Y, Lin B. Anti-angiogenic activities of chitooligosaccharides. Carbohydr. Polym. 73: 105-110 (2008) https://doi.org/10.1016/j.carbpol.2007.11.011
  140. Wu H, Yao Z, Bai X, Du Y, Ma X. Chitooligosaccharides inhibit nitric oxide mediated migration of endothelial cells in vitro and tumor angiogenesis in vivo. Carbohydr. Polym. 82: 927-932. (2010) https://doi.org/10.1016/j.carbpol.2010.06.015
  141. Wu S. Preparation of chitooligosaccharides from Clanis bilineata larvae skin and their antibacterial activity. Int. J. Biol. Macromol. 51: 1147-1150 (2012) https://doi.org/10.1016/j.ijbiomac.2012.08.035
  142. Wu T, Zivanovic S, Hayes DG, Weiss J. Efficient reduction of chitosan molecular weight by high-intensity ultrasound: Underlying mechanism and effect of process parameters. J. Agr. Food Chem. 56: 5112-5119 (2008) https://doi.org/10.1021/jf073136q
  143. Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 25: 170-179 (2011) https://doi.org/10.1016/j.foodhyd.2010.03.003
  144. Xia Z, Chen J, Wu S. Hydroll. activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect. Int. J. Biol. Macromol. 59: 96-98 (2013) https://doi.org/10.1016/j.ijbiomac.2013.04.017
  145. Xing R, Liu S, Yu H, Guo Z, Wang P, Li C, Li P. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr. Res. 340: 2150-2153 (2005) https://doi.org/10.1016/j.carres.2005.06.028
  146. Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y. Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr. Res. 344: 1975-1983 (2009) https://doi.org/10.1016/j.carres.2009.06.036
  147. Xu Q, Ma P, Yu W, Tan C, Liu H, Xiong C, Riao Y, Du Y. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide. Mar. Biotechnol. 12: 292-298 (2010) https://doi.org/10.1007/s10126-009-9222-1
  148. Xu Q., Dou J, Wei P, Tan C, Yun X, Wu Y, Bai X, Ma X, Du Y. Chitooligosaccharides induce apoptosis of human hepatocellular carcinoma cells via up-regulation of Bax. Carbohyd. Polym. 71: 509-514 (2008) https://doi.org/10.1016/j.carbpol.2007.06.022
  149. Xu W, Huang HC, Lin CJ, Jiang ZF. Chitooligosaccharides protect rat cortical neurons against copper induced damage by attenuating intracellular level of reactive oxygen species. Bioorg. Med. Chem. Lett. 20: 3084-3088 (2010) https://doi.org/10.1016/j.bmcl.2010.03.105
  150. Xu W, Xiao M, Yuan L, Zhang J, Hou Z. Preparation, physicochemical properties and hemocompatibility of biodegradable chitooligo saccharide-based polyurethane. Polymers 10: 580 (2018) https://doi.org/10.3390/polym10060580
  151. Xu Y, Zhang Q, Yu S, Yang Y, Ding F. The protective effects of chitooligosaccharides against glucose deprivation-induced cell apoptosis in cultured cortical neurons through activation of PI3K/Akt and MEK/ERK1/2 pathways. Brain Res. 1375: 49-58 (2011) https://doi.org/10.1016/j.brainres.2010.12.029
  152. Yang Y, Shu R, Shao J, Xu G, Gu X. Radical scavenging activity of chitooligosaccharide with different molecular weights. Eur. Food Res. Technol. 222: 36-40 (2006) https://doi.org/10.1007/s00217-005-0028-8
  153. Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effects of Chitooligosaccharides on RAW 264.7 mouse macrophages via regulation of the MAPK and PI3K/Akt signaling pathways. Mar. Drugs. 17: 36-48 (2019) https://doi.org/10.3390/md17010036
  154. Yoksan R, Akashi M, Miyata M, Chirachanchai S. Optimal ${\gamma}-ray$ dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure. Radiat. Res. 161: 471-480 (2004) https://doi.org/10.1667/RR3125
  155. Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr. Polym. 78: 869-872 (2009) https://doi.org/10.1016/j.carbpol.2009.07.004
  156. Yousef M, Pichyangkura R, Soodvilai S, Chatsudthipong V, Muanprasat C. Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: therapeutic efficacy and possible mechanisms of action. Pharmacol. Res. 66: 66-79 (2012) https://doi.org/10.1016/j.phrs.2012.03.013
  157. Zhao L, Sun T, Wang L. Chitosan oligosaccharide improves the therapeutic efficacy of sitagliptin for the therapy of Chinese elderly patients with type 2 diabetes mellitus. Ther. Clin. Risk Manag. 13: 739 (2017) https://doi.org/10.2147/TCRM.S134039
  158. Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci. Lett. 444: 270-274 (2008) https://doi.org/10.1016/j.neulet.2008.08.040
  159. 김세권, 변희국. 해양생물로부터 기능성 펩티드의 생산 및 응용. 식품과학과 산업. 51: 278-301 (2018)
  160. 김세권, 수산물과 고혈압. 해양 생물을 이용한 헬스케어. 자유아카데미, 한국, pp. 237-247, (2015)
  161. 김세권, 키틴.키토산 및 키토산 올리고당은 어떻게 만들어지는가? 해양 생물을 이용한 헬스케어. 자유아카데미, 한국, pp. 22-36 (2015)