DOI QR코드

DOI QR Code

당동만의 빈산소 발생 예측

The Prediction of Hypoxia Occurrence in Dangdong Bay

  • Kang, Hoon (Department of Civil & Environmental Engineering, Kunsan National University) ;
  • Kwon, Min Sun (Department of Civil & Environmental Engineering, Kunsan National University) ;
  • You, Sun Jae (Department of Civil & Environmental Engineering, Kunsan National University) ;
  • Kim, Jong Gu (Department of Civil & Environmental Engineering, Kunsan National University)
  • 투고 : 2019.12.19
  • 심사 : 2020.02.25
  • 발행 : 2020.02.28

초록

본 연구에서는 당동만을 중심으로 빈산소가 발생하는 물리적 해양환경 특성을 파악하고, 로지스틱 회귀분석을 이용해 빈산소 발생확률을 예측하였다. 관측 자료를 분석한 결과, 브런트-바이살라 주파수는 수심이 깊은 만 입구보다 수심이 얕은 만 내측에서 더 크게 나타났다. 이는 당동만 내측에서 담수 유입으로 인해 표층 염분이 낮아져 강한 밀도 성층이 형성되었기 때문이다. 시간적으로는 6월 ~ 9월까지 리차드슨 수와 브런트 바이살라 주파수가 매우 높게 나타났고, 9월 2일 이후로는 성층이 완화되어 감소하는 경향을 보였다. 당동만에서 관측된 용존산소 및 수온, 염분 자료를 분석한 결과, 저층의 용존산소 농도는 공통적으로 표층과 저층의 수온차에 가장 큰 영향을 받는 것으로 나타났다. 한편, 수심차(dz)를 고정된 변수로 두고, 수온차(dt)의 변화에 의한 빈산소의 발생 확률의 변화를 계산한 결과, 수심차(dz)가 각각 5 m, 10 m, 15 m, 20 m일 경우, 수온차(dt)는 8℃, 7℃, 5℃, 3℃일 때 빈산소 발생확률이 70 %를 상회하는 것으로 나타났다. 이는 당동만에서 수심차(dz)가 커질수록 빈산소 발생에 필요한 수온차(dt)는 작아지게 된다는 것을 뜻하며, 특히 당동만에서 수심차(dz)가 20 m 내외인 지역은 빈산소가 발생하기 매우 쉬운 환경이라는 것을 알 수 있었다.

The purpose of this study was to investigate the physical characteristics of marine environment, and to predict the probability of the occurrence of hypoxia in the Dangdong bay. We predicted hypoxia using the logistic regression model analysis by observing the water temperature, salinity, and dissolved oxygen concentration. The analysis showed that the Brunt-Väisälä frequency which was shallow than the deep bay entrance, was higher inside the bay due to a lesser amount of fresh water inflow from the inner side of the bay, and density stratification was formed. The Richardson number, and Brunt-Väisälä frequency were very high occasionally from June to September; however, after September 2, the stratification had a tendency to decrease. Analysis of dissolved oxygen, water temperature, and salinity data observed in Dangdong bay showed that the dissolved oxygen concentration in the bottom layer was mostly affected by the temperature difference (dt) between the surface layer and bottom layer. Meanwhile, when the depth difference (dz) was set as a fixed variable, the probability of the occurrence of hypoxia varied with respect to the difference in water temperature. The depth difference (dz) was calculated to be 5 m, 10 m, 15 m, 20 m, and the difference in water temperature (dt) was found to be greater than 70 % at 8℃, 7℃, 5℃, and 3℃. This indicated that the larger the difference in depth in the bay, the smaller is the temperature difference required for the generation of hypoxia. In particular, the place in the bay, where the water depth dif erence was approximately 20 m, was found to generate hypoxia.

키워드

참고문헌

  1. Brunt, D.(1927), The period of simple vertical oscillations in the atmosphere, Quarterly Journal of the Royal Meteorological Society, Vol. 53, Issue 221, pp. 30-32. https://doi.org/10.1002/qj.49705322103
  2. Cho, C. H.(1979), Mass Mortalitys of Oyster due to Red Tide in Jinhae Bay in 1978, Journal of the Korean Fisheries Society, Vol. 12, No. 1, pp. 27-33.
  3. Cho, C. H.(1991), Mariculture and eutrophication in Jinhae Bay, Korea. Marine Pollution Bulletin, 23, pp. 275-279. https://doi.org/10.1016/0025-326X(91)90687-N
  4. Diaz, R. J.(2001), Overview of hypoxia around the world, Journal of Environmental Quality, 30(2), pp. 275-281. https://doi.org/10.2134/jeq2001.302275x
  5. Diaz, R. J. and R. Rosenberg(1995), Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna, Oceanography and Marine Biology, An Annual Review, 33, pp. 245-303.
  6. Diaz, R. J. and R. Rosenberg(2008), Spreading dead zones and consequences for marine ecosystems, Science, 321(5891), pp. 926-929. https://doi.org/10.1126/science.1156401
  7. Donald, W. S. and S. W. Nixon(1992), Stratification and Bottom-Water Hypoxia in the Pamlico River Estuary, Estuaries and Coast, 15(3), pp. 270-281. https://doi.org/10.2307/1352775
  8. Hong, J. S.(1987), Summer oxygen deficiency and benthic biomass in the Chinhae Bay system, Korea. J. of the Korean Society of Oceanography, 22(4), pp. 246-256.
  9. James, G., D. Witten, T. Hastie, and R. Tibshirani(2013), An Introduction to Statistical Learning (with Applications in R), Springer, ISBN 978-1-4614-7137-0, pp. 130-133.
  10. Jeng, W. L. and B. C. Han(1996), Coprostanol in a sediment core from the anoxic Tan-Shui Estuary, Taiwan. Estuarine Coastal and Shelf Science, 42(6), pp. 727-735. https://doi.org/10.1006/ecss.1996.0046
  11. Karim, M. R., M. Sekine, and M. Ukita(2002), Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan, Marine Pollution Bulletin, 45(1-12), pp. 280-285. https://doi.org/10.1016/S0025-326X(02)00098-X
  12. Kim, D. S. and S. W. Kim(2003), Mechanism of Oxygen-Deficient Water Formation in Jindong Bay, Journal of the Korean Society of Oceanography, Vol. 8, No. 2, pp. 177-186.
  13. Kim, H. G.(1990), Characteristics of flagellate red tide and environmental conditions in Masan Bay. Bulletin of National Fisheries Research and Development Agency, 43, pp. 1-40.
  14. Kim, J. B., S. Y. Lee, J. Yu, Y. H. Choi, C. S. Jung, and P. Y. Lee(2006), The Characteristics of Oxygen Deficient Water Mass in Gamak Bay, Journal of the Korean society for marine environmental engineering, Vol. 9, No. 4, pp. 216-224.
  15. Kim, N. S., H. Kang, M. S. Kwon, H. S. Jang, and J. G. Kim(2016), Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay, Journal of the Korean society for marine environment and energy, Vol. 19, No. 1, pp. 74-85. https://doi.org/10.7846/JKOSMEE.2016.19.1.74
  16. Kim, S. Y., Y. H. Lee, Y. S. Kim, J. H. Sim, M. J. Ye, J. W. Jeon, J. R. Hwang, and S. H. Jeon(2012), Characteristics of Marine Environmental in the Hypoxic Season at Jinhae bay in 2010, Korean Journal of Nature Conservation Vol. 6, No. 2, pp. 115-129. https://doi.org/10.11624/KJNC.2012.6.2.115
  17. Lee, T. H.(2015), Sediment Oxygen Consumption Rate and Hydrogen Sulfide Release by Dissolved Oxygen Depletion in Hypoxic Area of the Gamak Bay, Korea, Journal of wetlands research, Vol. 17, No. 3, pp. 293-302. https://doi.org/10.17663/JWR.2015.17.3.293
  18. Lim, H. S., R. J. Diaz, J. S. Hong, and L. C. Schaffner(2006), Hypoxia and benthic community recovery in Korean coastal waters, Marine Pollution Bulletin, 52(11), pp. 1517-1526. https://doi.org/10.1016/j.marpolbul.2006.05.013
  19. Lowery, T. A.(1998), Modelling estuarine eutrophication in the context of hypoxia, nitrogen loadings, stratification and nutrient ratios. Journal of Environmental Management 52(3), pp. 289-305. https://doi.org/10.1006/jema.1998.0180
  20. McFadden, D.(1974), Conditional logit analysis of qualitative choice behavior, Academic Press, ISBN 0127761500, pp. 105-142.
  21. NIFS(2009), Hypoxia in the coast of Korea, SP-2009-ME-021, pp. 3-100.
  22. Pearson, T. H. and R. Rosenberg(1978), Macrobenthic succession on relation to organic enrichment and pollution of the marine environment, Oceanogr, Mar. Biol, Ann. Rev, 16, pp. 229-311.
  23. Rabalais, N. N., R. E. Turner, and D. Scavia(2002), Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience, 52(2), pp. 129-142. https://doi.org/10.1641/0006-3568(2002)052[0129:BSIPGO]2.0.CO;2
  24. Richardson, L. F.(1920), The supply of energy from and to atmospheric eddies. Pros. Roy. Soc. A 97, pp. 354-373.
  25. Simson, J., H. Brown, J. Matthews, and G. Allen(1990), Tidal straining, density, currents, and stirring in the control of estuarine Stratification , Estuaries, 13(2), pp. 125-132. https://doi.org/10.2307/1351581
  26. Vaisala, V.(1925), Uber die Wirkung der Windschwankungen aufdie Pilotbeobachtungen, Soc. Sci. Fenn. Commentat. Phys.-Math. 2(19), pp. 1-46.
  27. Wiseman, W. J., N, N. Rabalais, R. E. Tuner, S. P. Dinnel, and A. MacNaughton(1997), Seasonal and inter annual variability within the Louisianan coastal current: stratification and hypoxia, Journal of Marine Systems, 12(1-4), pp. 237-248. https://doi.org/10.1016/S0924-7963(96)00100-5
  28. Wu, R. S. S.(1982), Periodic defaunation and recovery in a subtropical epibenthic community, in relation to organic pollution. Journal of Experimental Marine Biology and Ecology, 64(3), pp. 253-269. https://doi.org/10.1016/0022-0981(82)90013-2