Acknowledgement
Supported by : King Abdulaziz University
This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (DF-182-130-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.
References
- Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forschung im Ingenieurwesen, 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.
- Abbas, I.A. (2009), "Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method", Arch. Appl. Mech., 79(1), 41-50. https://doi.org/10.1007/s00419-008-0206-9.
- Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3
- Abbas, I.A. (2014), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.
- Abbas, I.A. (2015), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.
- Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Abbas, I.A., Alzahrani, F.S. and Elaiw, A. (2019), "A DPL model of photothermal interaction in a semiconductor material", Waves Random Complex Media, 29(2), 328-343. https://doi.org/10.1080/17455030.2018.1433901.
- Abbas, I.A., El-Amin, M. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
- Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
- Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Cattaneo, C. (1958), "A form of heat conduction equation which eliminates the paradox of instantaneous propagation", Compte Rendus, 247(4), 431-433.
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Indian J. Pure Appl. Math., 28(12), 1573-1594.
- Debnath, L. and Bhatta, D. (2014), Integral Transforms and Their Applications, Chapman and Hall, CRC.
- Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. https://doi.org/10.1016/j.wavemoti.2013.06.009.
- Ellahi, R., Sait, S.M., Shehzad, N. and Ayaz, Z. (2019), "A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation", Int. J. Numer. Meth. Heat Fluid Flow, 30(2), 834-854. https://doi.org/10.1108/HFF-06-2019-0506.
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Modeling of memory-dependent derivative in generalized thermoelasticity", Eur. Phys. J. Plus, 131(10), 372. https://doi.org/10.1140/epjp/i2016-16372-3.
- Ezzat, M.A. (2011), "Theory of fractional order in generalized thermoelectric MHD", Appl. Math. Modell., 35(10), 4965-4978. https://doi.org/10.1016/j.apm.2011.04.004.
- Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177.
- Ezzat, M.A. and El-Karamany, A.S. (2011), "Fractional order theory of a perfect conducting thermoelastic medium", Can. J. Phys., 89(3), 311-318. https://doi.org/10.1139/P11-022.
- Ezzat, M.A. and El Karamany, A.S. (2011), "Theory of fractional order in electro-thermoelasticity", Eur. J. Mech. A/Solids, 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004.
- Ezzat, M.A., AlSowayan, N.S., Al-Muhiameed, Z.I. and Ezzat, S.M. (2014), "Fractional modelling of Pennes' bioheat transfer equation", Heat Mass Transfer, 50(7), 907-914. https://doi.org/10.1007/s00231-014-1300-x.
- Hobiny, A.D. and Abbas, I.A. (2018), "Fractional order photo-thermo-elastic waves in a two-dimensional semiconductor plate", Eur. Phys. J. Plus, 133(6), 232. https://doi.org/10.1140/epjp/i2018-12054-6.
- Hussein, E.M. (2015), "Fractional order thermoelastic problem for an infinitely long solid circular cylinder", J. Therm. Stresses, 38(2), 133-145. https://doi.org/10.1080/01495739.2014.936253.
- Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1), 1-36. https://doi.org/10.12989/gae.2014.7.1.001.
- Karageorghis, A., Lesnic, D. and Marin, L. (2014), "A moving pseudo-boundary MFS for void detection in two-dimensional thermoelasticity", Int. J. Mech. Sci., 88, 276-288. https://doi.org/10.1016/j.ijmecsci.2014.05.015.
- Kaur, I. and Lata, P. (2020), "Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation", GEM-Int. J. Geomath., 11(1), 4. https://doi.org/10.1007/s13137-020-0140-8.
- Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Lata, P. and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.
- Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. https://doi.org/10.12989/gae.2019.19.4.295.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal. Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Contin. Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
- Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
- Othman, M., Sarkar, N. and Atwa, S.Y. (2013), "Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature-dependent elastic medium", Comput. Math. Appl., 65(7), 1103-1118. https://doi.org/10.1016/j.camwa.2013.01.047.
- Othman, M.I. and Abd-Elaziz, E.M. (2019), "Influence of gravity and micro-temperatures on the thermoelastic porous medium under three theories", Int. J. Numer. Meth. Heat Fluid Flow, 29(9), 3242-3262. https://doi.org/10.1108/HFF-12-2018-0763.
- Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
- Sarkar, N. (2017), "Wave propagation in an initially stressed elastic half-space solids under time-fractional order two-temperature magneto-thermoelasticity", Eur. Phys. J. Plus, 132(4), 154. https://doi.org/10.1140/epjp/i2017-11426-8.
- Sarkar, N. and Lahiri, A. (2013), "The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity", Meccanica, 48(1), 231-245. https://doi.org/10.1007/s11012-012-9597-3.
- Sheikholeslami, M., Ellahi, R., Shafee, A. and Li, Z. (2019), "Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: An application of entropy generation and exergy loss", Int. J. Numer. Meth. Heat Fluid Flow, 29(3), 1079-1102. https://doi.org/10.1108/HFF-10-2018-0606.
- Sherief, H.H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034.
- Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
- Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
- Sur, A. and Kanoria, M. (2014), "Fractional order generalized thermoelastic functionally graded solid with variable material properties", J. Solid Mech., 6(1), 54-69.
- Wang, Y., Liu, D. and Wang, Q. (2015), "Effect of fractional order parameter on thermoelastic behaviors in infinite elastic medium with a cylindrical cavity", Acta Mechanica Solida Sinica, 28(3), 285-293. https://doi.org/10.1016/S0894-9166(15)30015-X.
- Youssef, H.M. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Transfer, 132(6), 1-7. https://doi.org/10.1115/1.4000705.
- Youssef, H.M. (2012), "Two-dimensional thermal shock problem of fractional order generalized thermoelasticity", Acta Mechanica, 223(6), 1219-1231. https://doi.org/10.1007/s00707-012-0627-y.
- Youssef, H.M. and Al-Lehaibi, E.A. (2010), "Variational principle of fractional order generalized thermoelasticity", Appl. Math. Lett., 23(10), 1183-1187. https://doi.org/10.1016/j.aml.2010.05.008.
Cited by
- A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.001