DOI QR코드

DOI QR Code

Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body

  • Al-Basyouni, K.S. (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Mostafa, H.M. (Department Physics, Faculty of Science, Al -Azhar University Assiut Branch) ;
  • Algarni, Ali (Department of Statistics, Faculty of Science, King Abdulaziz University)
  • Received : 2020.01.23
  • Accepted : 2020.03.01
  • Published : 2020.04.10

Abstract

In this article, an analytical solution for the effect of the rotation on thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected to periodic loading is studied. The distribution of displacements, temperature, redial stress, and hoop stress in non-homogeneous medium, in the context of generalized thermo-viscoelasticity using the GL theory, is discussed and obtained. The results are displayed graphically to illustrate the effect of the rotation. Comparisons with the previous work in the absence of rotation and viscosity are made.

Keywords

Acknowledgement

Supported by : King Abdulaziz University

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. (G: 449-130-1440). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abd-Alla, A.M., Abo-Dahab, S.M., Mahmoud, S.R. and Hammad, H.A. (2011c), "On generalized magneto-thermoelastic Rayleigh waves in a granular medium under influence of gravity field and initial stress", J. Vib. Control, 17(1), 115-128. https://doi.org/10.1177/1077546309341145.
  2. Abd-Alla, A.M., Yahya, G.A. and Mahmoud, S.R. (2013), "Radial vibrations in a non-homogeneous orthotropic elastic hollow sphere subjected to rotation", J. Comput. Theor. Nanosci., 10(2), 455-463. https://doi.org/10.1166/jctn.2013.2718.
  3. Abd-Alla, A.M. and Mahmoud, S.R. (2010a), "Magnetothermoelastic problem in rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model", Meccanica, 45(4), 451-462. https://doi.org/10.1007/s11012-009-9261-8.
  4. Abd-Alla, A.M. and Mahmoud, S.R. (2010b), "Effect of the rotation on propagation of thermoelastic waves in a nonhomogeneous infinite cylinder of isotropic material", Int. J. Math. Anal., 4, 2051-2064.
  5. Abd-Alla, A.M. and Mahmoud, S.R. (2012), "Analytical solution of wave propagation in non-homogeneous orthotropic rotating elastic media", J. Mech. Sci. Technol., 26(3), 917-926. https://doi.org/10.1007/s12206-011-1241-y.
  6. Abd-Alla, A.M., Mahmoud, S.R. and Abo-Dahab, S.M. (2012), "On problem of transient coupled thermoelasticity of an annular fin", Meccanica, 47(5), 1295-1306. https://doi.org/10.1007/s11012-011-9513-2.
  7. Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M. and Helmi, M.I.R. (2011b), "Propagation of S-wave in a non-homogeneous anisotropic incompressible and initially stressed medium under influence of gravity field", Appl. Math. Comput., 217(9), 4321-4332. https://doi.org/10.1016/j.amc.2010.10.029.
  8. Abd-Alla, A.M., Mahmoud, S.R. and AL-Shehri, N.A. (2011a), "Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material", Appl. Math. Comput., 217(22), 8914-8922. https://doi.org/10.1016/j.amc.2011.03.077.
  9. Abd-Alla, A.M., Yahya, G.A. and Mahmoud, S.R. (2013), "Effect of magnetic field and non-homogeneity on the radial vibrations in hollow rotating elastic cylinder", Meccanica, 48(3), 555-566. https://doi.org/10.1007/s11012-012-9615-5.
  10. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  11. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.Sh. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeam", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  12. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  13. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  14. Ailawalia, P., Budhirajab, S. and Singlac, A. (2014), "Dynamic problem in Green-Naghdi (type III) thermoelastic half-space with two temperature", Mech. Adv. Mater. Struct., 21(4), 544-552. https://doi.org/10.1080/15376494.2012.699596.
  15. Akbarzadeh, A. and Chen, Z. (2014), "Thermo-magneto-electroelastic responses of rotating hollow cylinders", Mech. Adv. Mater. Struct., 21(1), 67-80. https://doi.org/10.1080/15376494.2012.677108.
  16. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  17. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  18. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615.https://doi.org/10.12989/scs.2019.30.6.603.
  19. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  20. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  21. Batou, B., Nebab, M., Bennai, R., AitAtmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  22. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  23. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  24. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., AddaBedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  25. Berghouti, H., AddaBedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  26. Bhattacharyya, M., Kapuria, S. and Kumar, A.N. (2007), "On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material", Mech. Adv. Mater. Struct., 14(4), 295-302. https://doi.org/10.1080/15376490600817917.
  27. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516.https://doi.org/10.12989/scs.2019.31.5.503.
  28. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  29. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  30. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  31. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  32. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  33. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  34. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  35. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  36. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  37. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  38. Ezzat, M.A. and Atef, H.M. (2011), "Magneto-thermo-viscoelastic material with a spherical cavity", J. Civ. Eng. Construct. Technol., 2(1), 6-16.
  39. Ezzat, M.A. and El-Bary, A.A. (2017), "Generalized fractional magneto-thermo-viscoelasticity", Microsyst. Technol., 23(6), 1767-1777. https://doi.org/10.1007/s00542-016-2904-5.
  40. Ezzat, M.A., Zakaria, M. and El-Bary, A.A. (2012), "Twotemperature theory in thermo-electric viscoelastic material subjected to modified Ohm's and Fourier's laws", Mech. Adv. Mater. Struct., 19(6), 453-464. https://doi.org/10.1080/15376494.2010.550081.
  41. Fahmy, M.A. (2011), "A time-stepping DRBEM for magnetothermo-viscoelastic interactions in a rotating nonhomogeneous anisotropic solid", Int. J. Appl. Mech., 3(4), 711-734. https://doi.org/10.1142/S1758825111001202.
  42. Fahmy, M.A. (2012a), "A time-stepping DRBEM for the transient magneto-thermo-visco-elastic stresses in a rotating nonhomogeneous anisotropic solid", Eng. Anal. Bound. Elements, 36(3), 335-345. https://doi.org/10.1016/j.enganabound.2011.09.004.
  43. Fahmy, M.A. (2012b), "Transient magneto-thermoviscoelastic plane waves in a non-homogeneous anisotropic thick strip subjected to a moving heat source", Appl. Math. Modell., 36(10), 4565-4578. https://doi.org/10.1016/j.apm.2011.11.036.
  44. Fahmy, M.A. (2012c), "The effect of rotation and inhomogeneity on the transient magneto-thermoviscoelastic stresses in an anisotropic solid", J. Appl. Mech., 79(5), 051015. https://doi.org/10.1115/1.4006258.
  45. Fahmy, M.A. (2012d), "Transient magneto-thermo-elastic stresses in an anisotropic viscoelastic solid with and without moving heat source", Numer. Heat Transfer Part A Appl., 61(8), 547-564. https://doi.org/10.1080/10407782.2012.667322.
  46. Fahmy, M.A. (2013a), "Implicit-explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating anisotropic viscoelastic functionally graded solids", Eng. Anal. Bound. Elements, 37(1), 107-115. https://doi.org/10.1016/j.enganabound.2012.08.002.
  47. Fahmy, M.A. (2013b), "Generalized magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates by the dual reciprocity boundary element method", J. Therm. Stresses, 36(3), 284-303. https://doi.org/10.1080/01495739.2013.765206.
  48. Fahmy, M.A. (2013c), "A three-dimensional generalized magnetothermo-viscoelastic problem of a rotating functionally graded anisotropic solids with and without energy dissipation", Numer. Heat Transfer Part A Appl., 63(9), 713-733. https://doi.org/10.1080/10407782.2013.751317.
  49. Fahmy, M.A. (2014), "A computerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures", Lat. Amer. J. Solids Struct., 11(3), 386-409. https://doi.org/10.1590/S1679-78252014000300003.
  50. Fahmy, M.A. (2018a), "Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM", J. Therm. Stresses, 41(1), 119-138. https://doi.org/10.1080/01495739.2017.1387880.
  51. Fahmy, M.A. (2018b), "Shape design sensitivity and optimization of anisotropic functionally graded smart structures using bicubic B-splines DRBEM", Eng. Anal. Bound. Elements, 87, 27-35. https://doi.org/10.1016/j.enganabound.2017.11.005.
  52. Fahmy, M.A. (2019a), "Modeling and optimization of anisotropic viscoelastic porous structures using CQBEM and moving asymptotes algorithm", Arab. J. Sci. Eng., 44(2), 1671-1684. https://doi.org/10.1007/s13369-018-3652-x.
  53. Fahmy, M.A. (2019b), "Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using timedomain OQBEM", Math. Comput. Simul., 166, 193-205. https://doi.org/10.1016/j.matcom.2019.05.004.
  54. Fahmy, M.A. (2019c), "A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structure", Eng. Anal. Bound. Elements, 108, 192-200. https://doi.org/10.1016/j.enganabound.2019.08.006.
  55. Fahmy, M.A. (2020), "A new convolution variational boundary element technique for design sensitivity analysis and topology optimization of anisotropic thermo-poroelastic structures", Arab. J. Basic Appl. Sci., 27(1), 1-12. https://doi.org/10.1080/25765299.2019.1703493.
  56. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636219845841.
  57. Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035.
  58. Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018a), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mech., 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.
  59. Hirwani, C.K. and Panda, S.K. (2019a), "Nonlinear thermal free vibration frequency analysis of delaminated shell panel using FEM", Compos. Struct., 224, 111011. https://doi.org/10.1016/j.compstruct.2019.111011.
  60. Hirwani, C.K. and Panda, S.K. (2019b), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-019-00757-6.
  61. Hirwani, C.K. and Panda, S.K. (2019c), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Modell., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014.
  62. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018b), "Delamination effect on flexural responses of layered curved shallow shell panelexperimental and numerical analysis", Int. J. Comput. Meth., 15(4), 1850027. https://doi.org/10.1142/S0219876218500275.
  63. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., In Press.
  64. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled FG cylindrical shell", Adv. Comput. Des., In Press.
  65. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  66. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  67. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  68. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  69. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  70. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  71. Karami, B., Janghorban, M. and Tounsi, A. (2020), "Novel study on functionally graded anisotropic doubly curved nanoshells", Eur. Phys. J. Plus, 135(1), 103. https://doi.org/10.1140/epjp/s13360-019-00079-y.
  72. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019d), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  73. Katariya, P.V. and Panda, S.K. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
  74. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279
  75. Katariya, P.V. and Panda, S.K. (2019b), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  76. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  77. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  78. Kumar, R., Kumar, A. and Mukhopadhyay, S. (2016), "An investigation on thermoelastic interactions under twotemperature thermoelasticity with two relaxation parameters", Math. Mech. Solids, 21(6), 725-736. https://doi.org/10.1177/1081286514536429.
  79. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded Tjoints", Wind Struct., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.
  80. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermomechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  81. Mahmoud, S.R. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47(7), 1561-1579. https://doi.org/10.1007/s11012-011-9535-9.
  82. Mahmoud, S.R., Abd-Alla, A.M. and AL-Shehri, N.A. (2011a), "Effect of the rotation on plane vibrations in a transversely isotropic infinite hollow cylinder", Int. J. Modern Phys. B, 25(26), 3513-3528. https://doi.org/10.1142/S0217979211100928.
  83. Mahmoud, S.R., Abd-Alla, A.M. and Matooka, B.R. (2011b), "Effect of the rotation on wave motion through cylindrical bore in a micropolar porous cubic crystal", Int. J. Modern Phys. B, 25(20), 2713-2728. https://doi.org/10.1142/S0217979211101739.
  84. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  85. Mashat, D.S., Zenkour, A.M. and Abouelregal, A.E. (2017), "Thermoelastic interactions in a rotating infinite orthotropic elastic body with a cylindrical hole and variable thermal conductivity", Arch. Mech. Eng., 64(4), 481-498. https://doi.org/10.1515/meceng-2017-0028.
  86. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E. A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., In Press.
  87. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  88. Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
  89. Mehar, K. and Panda, S.K. (2019a), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 1-19. https://doi.org/10.1007/s00707-019-02579-5.
  90. Mehar, K. and Panda, S.K. (2019b), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  91. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  92. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  93. Miara, B., Rohan, E., Griso, G., Avila, A., Bossavit, A., Ouchetto, O., Zouhdi, S., Zidi, M. and Labat, B. (2007), "Application of multi-scale modelling to some elastic, piezoelectric and electromagnetic composites", Mech. Adv. Mater. Struct., 14(1), 33-42. https://doi.org/10.1080/15376490600864547.
  94. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  95. Othman, M.I.A. and Song, Y. (2008), "Effect of rotation on plane waves of generalized electro-magneto-thermo viscoelasticity with two relaxation times", Appl. Math. Modell., 32(5), 811-825. https://doi.org/10.1016/j.apm.2007.02.025.
  96. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisciplin. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  97. Othman, M.I.A. and Hilal, M.I.M. (2017), "Effect of initial stressed and rotation on magneto-thermoelastic material with voids and energy dissipation", Multidisciplin. Model. Mater. Struct., 13(2), 331-346. https://doi.org/10.1108/MMMS-09-2016-0047.
  98. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  99. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. nad Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  100. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. DOI: 10.32474/TCEIA.2018.03.000151.
  101. Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigen frequency and deflection analysis of layered structure using uncertain elastic properties-a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
  102. Rahmani, M.C., Kaci ,A., Bousahla, A.A., Bourada, F., Tounsi ,A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, In Press.
  103. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  104. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165
  105. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F., and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  106. Sahoo, S., Hirwani, C.K., Panda, S.K. and Sen, D. (2018), "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Scientia Iranica, 25(4), 2218-2232. https://doi.org/10.24200/sci.2017.4346.
  107. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  108. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  109. Sharma, K. and Kumar, P. (2013), "Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids", J. Therm. Stresses, 36(2), 94-111. https://doi.org/10.1080/01495739.2012.720545.
  110. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  111. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  112. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  113. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  114. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.

Cited by

  1. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
  2. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  3. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  4. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7
  5. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697
  6. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593