DOI QR코드

DOI QR Code

Escaping Uncertainty: Elementary Students' Emotional-Cognitive Rebuttals in the Argumentation of "Why Did the Kidney Beans not Germinate?"

불확실함에서 벗어나기까지: "왜 강낭콩이 싹트지 않았을까?" 논변 활동에서 초등학생들의 정서-인지적 반박

  • Received : 2019.09.25
  • Accepted : 2020.01.20
  • Published : 2020.02.29

Abstract

In scientific argumentation, students can use rebuttals to escape uncertainty, which, in this case, can be defined as a vague and fuzzy feeling about other students' explanations. As rebuttals can play a critical role in the sophistication of arguments and the alleviation of uncertainty, this study aims to understand the dynamics of uncertainty and rebuttals by exploring the context of the uncertainty experienced by elementary school students in the argumentation of "Why did the kidney beans not germinate?" and to get insights based on the research results. Twenty fourth-grade students and their homeroom teacher in Kyong-Ki province, South Korea, took part in the research. Students engaged in argumentation in five small groups of four students. The researcher collected qualitative data through video transcriptions, student interviews, and field notes. In the data analysis, the researcher employed the constant comparative method to explore in what context students experienced uncertainty and how they used rebuttals. The results of this study were as follows: First, students tried to reduce their uncertainty through argumentation on why the kidney beans did not germinate. Second, students used elaboration-oriented rebuttals, personal opinion-oriented rebuttals, and blame-oriented rebuttals to reduce this uncertainty. However, when they used blame-oriented rebuttals, their uncertainty and negative emotions increased. Third, intervention by the teacher led students to stop using blame-oriented rebuttals. Instead, they employed elaboration-oriented rebuttals to explore why the kidney beans would not sprout, and finally, they escaped uncertainty by discovering an appropriate explanation. Based on the findings of this study, the researcher discussed how the interaction between uncertainty and elaboration-oriented rebuttals could shape and facilitate argument development in elementary school students.

논변 활동에서 불확실함은 상대방의 설명에 대한 막연하고 애매모호한 느낌을 말하며 학생들은 그들이 경험하는 불확실함에서 벗어나기 위해 반박을 사용할 수 있다. 본 연구의 목적은 초등학생들이 "왜 강낭콩이 싹트지 않았을까" 논변 활동에서 경험한 불확실함 맥락과 이에 따른 반박 사용이 어떠했는지를 탐색하여 불확실함과 반박 간의 역동을 이해하는 데 있다. 이를 위해 본 연구는 논변 정교화와 불확실함 감소에 중요한 역할을 할 수 있는 반박이 활발하게 나타날 수 있는 맥락을 불확실함 경험 측면에서 해석하고 설명하고자 한다. 경기도 초등학교 4학년 학생 20명 및 담임교사가 연구 참여자로 참여하였으며 학생들은 5개(남, 녀 4명으로 구성)의 소집단으로 이루어져 논변 활동에 참여하였다. 연구자는 학생들의 논변 활동이 녹화된 비디오에 대한 전사본, 학생들과의 면담, 연구자의 필드 노트를 질적 자료로 수집하였다. 자료 분석 과정에서, 지속적 반복적 비교 방법을 사용하여 학생들이 어떠한 맥락에서 불확실함을 경험하였고 이에 따른 반박 사용은 어떻게 나타났는지를 탐색하였다. 이를 통해 나타난 연구 결과는 첫째, 학생들은 "왜 강낭콩이 싹트지 않았을까?" 논변 활동에서 불확실함을 경험하였고 이 정서에서 벗어나고자 하였다. 둘째, 학생들은 이 불확실함을 줄이고자 정교화형 반박, 의견형 반박, 비난형 반박을 사용하였다. 그러나 학생들의 불확실함은 감소하지 않았으며 그들이 사용한 비난형 반박은 학생들의 부정적 정서를 높이기도 하였다. 셋째, 교사의 개입은 학생들이 비난형 반박 사용을 멈추도록 이끌었으며, 학생들은 정교화형 반박을 사용하여 강낭콩이 싹틀 수 있는 조건을 탐색하였고 "왜 강낭콩이 싹트지 않았는가?"에 대한 적절한 설명을 찾게 되면서 불확실함에서 벗어날 수 있었다. 추가적으로 연구자는 본 연구 결과를 토대로 하여 불확실함과 정교화형 반박의 상호작용이 일어나도록 하는 것이 논변 발달을 촉진할 수 있음을 논의하였다.

Keywords

References

  1. Afifi, T. D., & Afifi, W. A. (Eds.). (2009). Uncertainty, information management, and disclosure decisions: Theories and applications. New York, NY: Routledge.
  2. Alsop, S. (2005). Beyond Cartesian Dualism: Encountering Affect in the Teaching and Learning of Science. Dordrecht: Springer Science & Business Media.
  3. Anderson, R. C., Nguyen-Jahiel, K., McNurlen, B., Archodidou, A., Kim, S., Reznetskaya, A., & Gilbert, L. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19(1), 1-46. doi:10.1207/S1532690XCI1901_1
  4. Arango-Munoz, S. (2014). The nature of epistemic feelings. Philosophical Psychology, 27(2), 193-211. https://doi.org/10.1080/09515089.2012.732002
  5. Arango-Munoz, S., & Michaelian, K. (2014). Epistemic feelings, epistemic emotions: Review and introduction to the focus section. Philosophical Inquiries, 2/1, 97-122.
  6. Atwood, S., Turnbull, W., & Carpendale, J. I. M. (2010). The construction of knowledge in classroom talk. The Journal of the Learning Sciences, 19(3), 358-402. https://doi.org/10.1080/10508406.2010.481013
  7. Barr, D. J. (2003). Paralinguistic correlates of conceptual structure. Psychonomic Bulletin & Review, 10(2), 462-467. https://doi.org/10.3758/BF03196507
  8. Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. https://doi.org/10.1002/tea.20446
  9. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  10. Buck, Z. E., Lee, H.‐S., & Flores, J. (2014). I am sure there may be a planet there: Student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420. https://doi.org/10.1080/09500693.2014.924641
  11. Chen, Y.-C., Benus, M. J., & Hernandez, J. (2019). Managing uncertainty in science argumentation. Science Education. DOI: https://doi.org/10.1002/sce.21527
  12. Clore, G. L. (1992). Cognitive phenomenology: The role of feelings in the construction of social judgment. In A. Tesser & L. L. Martin (Eds.), The construction of social judgments (pp. 133-164). Hillsdale, NJ: Erlbaum.
  13. Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative research. London, England: Sage.
  14. Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R., Koschmann, T., Lemke, J., Sherin, M., & Sherin, B. L. (2010). Conducting video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. The Journal of the Learning Sciences, 19(1), 3-53. https://doi.org/10.1080/10508400903452884
  15. Duit. R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(3), 671-688. https://doi.org/10.1080/09500690305016
  16. Dunbar, K., & Fugelsang, J. (2005). Scientific thinking and reasoning. In K. J. Holyoak & R. Morrison (Eds.), Cambridge handbook of thinking and reasoning (pp. 705-726). Cambridge, England: Cambridge University Press.
  17. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
  18. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. https://doi.org/10.1207/S1532690XCI2004_1
  19. Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  20. Erickson, F. (1992). Ethnographic microanalysis of interaction. In M. D. LeCompte, W. L. Millroy, & J. Preissle (Eds.), The handbook of qualitative research in education (pp. 202-224). San Diego, CA: Academic Press.
  21. Feldman, C. F., & Wertsch, J. V. (1976). Context dependent properties of teachers' speech. Youth & Society, 7(3), 227-258. https://doi.org/10.1177/0044118X7600700301
  22. Garcia‐Carmona, A., & Acevedo‐Diaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science and Education, 26(1-2), 65-91. https://doi.org/10.1007/s11191-017-9876-4
  23. Ha, H., & Kim, H. B. (2017). Exploring responsive teaching's effect on students' epistemological framing in small group argumentation. Journal of Korean Association for Science Education, 37(1), 63-75. https://doi.org/10.14697/jkase.2017.37.1.0063
  24. Ha, H., Lee, Y. M., & Kim, H. B. (2018). Exploring the teachers' responsive teaching practice and epistemological framing in whole class discussion after small group argumentation activity. Journal of the Korean Assoication for Science Education, 38(1), 11-26.
  25. Hammer, D., Russ, R., Mikeska, J., & Scherr, R. (2008). Identifying inquiry and conceptualizing students' abilities. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 138-156). Rotterdam, The Netherlands: Sense Publishers.
  26. Han, M. H., & Kim, H. B. (2017). Elementary students' cognitive-emotional rebuttals in their modeling activity: Focusing on epistemic affect. Journal of the Korean Association for Science Education, 37(1), 155-168. https://doi.org/10.14697/jkase.2017.37.1.0155
  27. Han, M. H., & Kim, H. B. (2018). An introverted elementary students' construction of epistemic affect during modeling participation patterns. Journal of the Korean Association for Science Education, 38(2), 171-186. https://doi.org/10.14697/JKASE.2018.38.2.171
  28. Jaber, L. Z., & Hammer, D. (2016). Learning to feel like a scientist. Science Education, 100(2), 189-220. https://doi.org/10.1002/sce.21202
  29. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). Doing the lesson or doing science: Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  30. Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The journal of the learning sciences, 4(1), 39-103. https://doi.org/10.1207/s15327809jls0401_2
  31. Jordan, M. E., & McDaniel, R. R. (2014). Managing uncertainty during collaborative problem solving in elementary school teams: The role of peer influence in robotics engineering activity. The Journal of the Learning Sciences, 23(4), 490–536. https://doi.org/10.1080/10508406.2014.896254
  32. Kang, B. C., Kang, S. H., Kim, Y. H., Park, J. W., Seo, E. J., Lee, W. J., Jung, H. S., Che, W. H., Cho, J. Y., Chae, J. C., Ha, S. H., Hyun, T. H., & Hong, J. I. (2019). SNU scientists who believe in God. Seoul, South Korea: Revival and reform corporation.
  33. Kim, H., Kang, E., & Kim, H. B. (2015a). Expression of students' agency in an elementary school science class: A focus on teaching and learning contexts. Biology Education, 43(3), 289-301. https://doi.org/10.15717/bioedu.2015.43.3.289
  34. Kim, S., Lee, S. Y., & Kim, H. B. (2015b). Exploring a teacher's argumentation-specific pedagogical content knowledge identified through collaborative reflection and teaching practice for science argumentation. Journal of the Korean Association for Science Education, 35(6), 1019-1030. https://doi.org/10.14697/jkase.2015.35.6.1019
  35. King, D., Ritchie, S., Sandhu, M., & Henderson, S. (2015). Emotionally intense science activities. International Journal of Science Education, 37(12), 1886-1914. https://doi.org/10.1080/09500693.2015.1055850
  36. King, D., Ritchie, S. M., Sandhu, M., Henderson, S., & Borand, B. (2017). Temporality of Emotion: Antecedent and successive variants of frustration when learning chemistry. Science Education, 101(4), 639-672. https://doi.org/10.1002/sce.21277
  37. Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking and Reasoning, 13(2), 90-104. https://doi.org/10.1080/13546780600625447
  38. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.
  39. Leitao, S. (2000). The potential of argument in knowledge building. Human Development, 43(6), 332-360. https://doi.org/10.1159/000022695
  40. Lee, H. S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infussed scientific argumentation. Journal of Research in Science Teaching, 51(5), 581-605. https://doi.org/10.1002/tea.21147
  41. Lee, H.‐S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Automated text scoring and real‐time adjustable feedback: Supporting revision of scientific arguments involving uncertainty. Science Education, 103(3), 590-622. https://doi.org/10.1002/sce.21504
  42. Lee, K. H., Yoon, S. M., & Kim, H. B. (2013). Differences in reasoning patterns in small-group argumentation focused on the features of classificuation task. Biology Education, 40(3), 344-356.
  43. Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, New Jersey: Ablex publishing corporation.
  44. Lin, Y.-R., & Hung, J.-F. (2016). The analysis and reconciliation of students' rebuttals in argumentation activities. International Journal of Science Education, 38(1), 130-155. https://doi.org/10.1080/09500693.2015.1134848
  45. Maclay, H., & Osgood, C. E. (1959). Hesitation phenomena in spontaneous speech. Word, 15, 19-44. https://doi.org/10.1080/00437956.1959.11659682
  46. McNeill, K. L., Gonzalez Howard, M., Katsh-Singer, R., & Loper, S. (2017). Moving beyond pseudoargumentation: Teachers' enactments of an educative science curriculum focused on argumentation. Science Education, 101(3), 426-457. https://doi.org/10.1002/sce.21274
  47. McNeill, K. L., & Krajcik, J. (2012). Supporting grade 5-8 students in constructing explanations in science: The claim, evidence and reasoning framework for talk and writing. New York, NY: Pearson Allyn & Bacon.
  48. McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban Classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229. https://doi.org/10.1002/sce.20364
  49. Meaney, T. (2006). Really that's probably about roughly what goes down: Hesitancies and uncertainties in mathematics assessment interactions. Language and Education, 20, 374-390. https://doi.org/10.2167/le638.0
  50. Muis, K. R., Chevrier, M., & Singh, C. A. (2018). The role of epistemic emotions in personal epistemology and self-regulated learning. Educational Psychologist, 53(3), 165-184. https://doi.org/10.1080/00461520.2017.1421465
  51. Osborne, J. E. (2002). Science without literacy: A ship without a sail? Cambridge Journal of Education, 32(2), 203-215. https://doi.org/10.1080/03057640220147559
  52. Osborne, J. E., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627-638. https://doi.org/10.1002/sce.20438
  53. Osborne, J. E., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  54. Park, C., & Cha, H. (2017). Analysis of epistemic considerations and scientific argumentation level in argumentation to conceptualize the concept of natural selection of science-gifted elementary students. Journal of the Korean Association for Science Education, 37(4), 565-575. https://doi.org/10.14697/jkase.2017.37.4.565
  55. Park, S-H., Lee S., & Kim, H-B. (2014). Exploring middle school students' metacognitive development via collaborative reflection of small-group argumentation in science classroom. Biology Education, 42(1), 1-15. https://doi.org/10.15717/bioedu.2014.42.1.1
  56. Pollock, J. L. (1987). Defeasible reasoning. Cognitive science, 11(4), 481-518. https://doi.org/10.1207/s15516709cog1104_4
  57. Reznitskaya, A., & Gregory, M. (2013). Student thought and classroom language: Examining the mechanisms of change in dialogic teaching. Educational Psychologist, 48(2), 114-133. https://doi.org/10.1080/00461520.2013.775898
  58. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. https://doi.org/10.1002/sce.20065
  59. Schubert, T. W. (2009). A new conception of spatial presence: Once again, with feeling. Communication Theory, 19, 161-187. https://doi.org/10.1111/j.1468-2885.2009.01340.x
  60. Schunn, C. D., Saner, L. D., Kirschenbaum, S. K., Trafton, J. G., & Littleton, E. B. (2007). Complex visual data analysis, uncertainty, and representation. In M. Lovett & P. Shah (Eds.), Thinking with data (pp. 27-63). Mahwah, NJ: Erlbaum.
  61. Schwarz, N., & Clore, G. L. (2007). Feelings and phenomenal experiences. In E. T. Higgins & A. W. Kruglanski (Eds.), Social psychology: Handbook of basic principles (2nd ed., pp. 385-407). New York, NY: Guilford Press.
  62. She, H. C., & Liao, Y. W. (2009). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91-119. https://doi.org/10.1002/tea.20309
  63. Tomas, L., Rigano, D., & Ritchie, S. M. (2016). Students' regulation of their emotions in a science classroom. Journal of Research in Science Teaching, 53(2), 234-260. https://doi.org/10.1002/tea.21304
  64. Toulmin, S. E. (2003). The uses of argument. Cambridge, UK: Cambridge University Press.
  65. Turner, J. H. (2009). The sociology of emotions: Basic theoretical arguments. Emotion Review, 1(4), 340-354. https://doi.org/10.1177/1754073909338305
  66. Turner, G. J., & Pickvance, R. E. (1973). Social class differences in the expression of uncertainty in five-year-old children. In B. Bernstein (Ed.), Class, codes, and control (pp. 303-325). London, England: Routledge.
  67. Vosniadou, S., & Skopeliti, I. (2014). Conceptual change from the framework theory side of the fence. Science and Education, 23(7), 1427-1445. https://doi.org/10.1007/s11191-013-9640-3
  68. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A. S., & Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense‐making. Journal of Research in Science Teaching, 38(5), 529-552. https://doi.org/10.1002/tea.1017
  69. Weary, G., Marsh, K. L., Gleicher, F., & Edwards, J. A. (1993). Depression, control motivation, and the processing of information about others. In G. Weary, F. Gleicher, & K. L. Marsh (Eds.), Control motivation and social cognition (pp. 255-287). New York, NY: Springer-Verlag.
  70. Wells, G. (2000). Modes of meaning in a science activity. Linguistics and Education, 10(3), 307-334. https://doi.org/10.1016/S0898-5898(99)00011-X
  71. Wendell, K. B., & Lee, S. (2010). Elementary students' learning of materials science practices through instruction based on engineering design tasks. Journal of Science Education and Technology, 19, 580-601. DOI:10.1007s10956-010-9225-8 https://doi.org/10.1007/s10956-010-9225-8
  72. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008