DOI QR코드

DOI QR Code

A Study on the Analysis of Semi-infinite Array Structures for Defect Analysis in Frequency Selective Radome

주파수 선택적 레이돔 결함요소 해석을 위한 반-무한배열구조 해석 방안에 관한 연구

  • Lee, Sang-Hwa (Dept. of Information & Communication Engineering, Kongju National University) ;
  • Oh, Won-Seok (Agency for Defense Development) ;
  • Kim, Yoon-Jae (Agency for Defense Development) ;
  • Hong, Ic-Pyo (Dept. of Information & Communication Engineering, Kongju National University)
  • Received : 2020.03.03
  • Accepted : 2020.03.26
  • Published : 2020.03.31

Abstract

In this paper, a semi-infinite array analysis method is proposed to analyze the defects that may occur during the fabrication of the frequency selective radome. In the analysis of N×N finite array structure using 3D analysis software, much analysis time and memory are required, whereas the semi-infinite array structure analysis proposed in this paper can predict relatively accurate electromagnetic performance while reducing the analysis time. In comparison with the results of the periodic simulation, the simulation of the semi-infinite array structure confirmed the error within ±3%. To verify the results of the simulation, the results were compared with the measured results, and the same tendency at the point of performance change and similar performance degradation at the band of interest were investigated. Using the proposed semi infinite array structure analysis, it is confirmed that the analysis of defects in the electromagnetic periodic structure is possible.

본 논문에서는 전자기 주기구조인 주파수 선택 구조를 레이돔에 적용하는 과정에서 발생하는 결함요소를 해석하기 위해 반-무한배열구조 해석방법을 제안하였다. 3D 전자기 해석 소프트웨어를 이용하여 N×N 유한배열 구조를 해석 하게 되면 많은 해석시간과 메모리가 소요되는 반면 제안한 반-무한배열구조 해석을 이용하면 적은 계산시간으로 전자기성능을 비교적 정확하게 예측할 수 있다. 주기구조해석과 반-무한배열구조의 해석 결과를 비교하여 ±3% 이내의 오차를 확인하였다. 주기적으로 배열된 패턴의 중심부에 발생한 결함요소에 대해 해석과 측정결과를 비교하였으며, 일부 해석과 측정결과의 오차는 존재하지만, 성능변화 지점에서 동일한 경향성과 관심대역에서 유사한 성능저하를 확인하였으며, 반-무한배열구조 해석을 이용하여 전자기 주기구조 내 발생하는 결함요소의 해석 가능성을 확인하였다.

Keywords

References

  1. B. A. Munk, "Frequency Selective Surfaces: Theory and Design," Wiley-Interscience, 2005.
  2. B. A. Munk, "Finite Antenna Arrays and FSS," Wiley-Interscience, 2003.
  3. R. E. Jorgenson, L. I. Basilio, W. A. Johnson, L. K. Warne, D. W. Peters, D. R. Wilton and F. Capolino, "Analysis of Electromagnetic Scattering by Nearly Periodic Structure: an LDRD Report," Sandia National Laboratories, 2006. DOI: 10.2172/896283
  4. I. P. Hong, "Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns," Journal of Electrical Engineering and Technology, Vol.9, No.4, pp.742-746, 2014. DOI: 10.5370/JEET.2014.9.4.1360
  5. S. H. Lee, I. P. Hong and Y. J. Kim, "Analysis of Discontinuous Structure Effect in Frequency Selective Radome Manufacturing," Journal of the KIMST, Vol.22, No.5, pp.607-615, 2019. DOI: 10.9766/KIMST.2019.22.5.607
  6. L. B. Wang, K. Y. See, J. W. Zhang, B. Salam, and A. C. W. Lu, "Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol.53, No.3, pp.700-705, 2011. DOI: 10.1109/TEMC.2011.2159509
  7. M. B. Perotoni, L. A. Andrade, and C. Junqueira, "Design, Prototyping and Measurement of a Cascaded 6-GHz Frequency Selective Surface Array," Journal of Aerospace Technology and Management, Vol.8, No.2, pp.137-142. 2016. DOI: 10.5028/jatm.v8i2.629
  8. A. Dalkilic, "Analysis and design of conformal frequency selective surfaces," Master thesis, Middle East Technical University. 2014.
  9. S. D. Jang, B. W. Kang, and J. Kim, "Frequency selective surface based passive wireless sensor for structural health monitoring," Smart Materials and Structures, Vol.22, No.2, pp.1-7, 2012. DOI: 10.1088/0964-1726/22/2/025002