DOI QR코드

DOI QR Code

Analysis of On-orbit Thermal Environment of Earth Orbit Satellite during Mission Lifetime

지구궤도 인공위성의 임무기간 중 궤도 열 환경 분석

  • Received : 2019.09.05
  • Accepted : 2020.02.06
  • Published : 2020.02.28

Abstract

The start of satellite thermal design was to predict the worst operating environment through analysis of the thermal environment of the operation orbit. Because the satellites have different types of operating trajectories for their mission, the exposed thermal environment also varies. Thus, it is necessary to analyze in consideration of the orbital conditions, and a design was performed to guarantee thermal stability for the worst case defined through the analysis. The orbital thermal environmental analysis required an understanding of the basic orbit mechanics and the heat exchange relationship between the space environment and satellite. The purpose of this paper was to provide an understanding of the orbital thermal environment analysis by providing basic data on the space thermal environment in the earth-orbit and describing thermal relations that calculate the amount of space heat inflow into satellites. Additionally, an example of a virtual satellite shows the overall process of analyzing the orbital thermal environment during a mission lifetime.

위성 열 설계의 시작은 운용궤도의 열 환경 분석을 통한 최악의 운용 환경을 예측하는 것이다. 위성은 주어진 임무에 맞는 다양한 형태의 운용궤도를 가지기 때문에 노출되는 열 환경 또한 다르다. 따라서, 위성의 궤도조건을 고려한 외부 열 환경 분석이 필수이며, 이를 통해 선정된 위성의 최악의 조건에 대해 열적 안정성을 보장하는 설계를 수행하게 된다. 궤도 열 환경 분석을 위해서는 궤도역학은 물론 우주 열 환경과 위성체 사이의 열 교환 관계에 대한 이해가 필요하다. 이에 본 논문에서는 지구궤도 내 우주 열 환경에 관한 기초자료를 제공하고, 위성체에 유입되는 우주 열 유입량을 계산하는 열 관계식을 서술함으로써 궤도 열 환경 분석의 이해를 돕고자 하였다. 또한, 가상의 위성 예제를 통해 임무기간 중 궤도 열 환경을 분석하는 전반적인 과정을 보였다.

Keywords

References

  1. B. S. Hyun, H. K. Kim and J. J. Lee, "Development Trend of Satellite Thermal Control System", Current Industrial and Technological Trends in Aerospace, vol. 4, no. 1, pp. 32-38, September 2007, page.32-38.
  2. J. J. Lee, H. K. Kim, B. S. Hyun and J. M. Choi, "Study of thermal analysis case for satellite in Dawn-Dusk Orbit", 2016 Spring Conference of The Korean Society for aeronautical and space sciences, pp. 876-879, April 2006..
  3. C. G. Justus, G. W. Batts, B. J. Anderson and B. F. James, "Simple thermal environment Model(STEM) user's guide", National Aeronautics and Space Administration, Marshall Space Flight Center, October 2007.
  4. P. L. Romain, "Using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis", International Conference on the 47th Environmental Systems, July 2017.
  5. B. J. Anderson, C. G. Justus, and W. Batts, "Guidelines for the Selection of Near-Earth Thermal Environment parameters for Spacecraft Design", NASA Technical memo-randum TM-2001-211211, October 2001.
  6. C. Frohlich and R. W. Brusa, "Solar Radiation and Its Variation in Time", Vol. Phy. 74 , 1981, pp. 209-215. https://doi.org/10.1007/BF00151291
  7. C. Frohlich and C. Wehrli, "Spectral Distribution of Solar Irradiance form 25000nm to 250nm", World Radiation Center, Davos, witzeland, 1981.
  8. T. D. Bess and G. L. Smith, "Earth Radiation Budget: Results of Outgoing Longwave Radiation from Nimbus-7, NOAA-9, and ERBS Satellites", Journal of Applied meteorology, vol. 32, pp.813-824, May 1993. https://doi.org/10.1175/1520-0450(1993)032<0813:ERBROO>2.0.CO;2
  9. D. G. Gilmore, Spacecraft Thermal Control Handbook, 2nd Ed., The Aerospace Press, California, 2002.