DOI QR코드

DOI QR Code

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity

고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성

  • Jo, Hyun-Gi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 조현기 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2019.10.29
  • Accepted : 2019.12.03
  • Published : 2020.01.27

Abstract

Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Keywords

References

  1. G. Merle, M. Wessling and K. Nijmeijer, J. Membr. Sci., 377, 1 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  2. O. Z. Sharaf and M. F. Orhan, Renew. Sust. Energ. Rev., 32, 810 (2014). https://doi.org/10.1016/j.rser.2014.01.012
  3. Y.-T. An, M.-J. Ji, S.-M. Park, S.-H. Shin, H.-J. Hwang and B.-H. Choi, Korean J. Mater. Res., 23, 206 (2013). https://doi.org/10.3740/MRSK.2013.23.3.206
  4. S. J. Peighambardoust, S. Rowshanzamir and M. Amjadi, Int. J. Hydrog. Energy, 35, 9349 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  5. W. Yuan, X. Fan, Z. M. Cui, T. Chen, Z. Dongc and C. M. Li, J. Mater. Chem. A., 4, 7352 (2016). https://doi.org/10.1039/C6TA02320G
  6. P. Kolla and A. Smirnova, Int. J. Hydrog. Energy, 38, 15152 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.096
  7. Y.-S. Yeom and H.-J. Ahn, Korean J. Mater. Res., 21, 419 (2011). https://doi.org/10.3740/MRSK.2011.21.8.419
  8. D.-Y. Sin, G.-H. An and H.-J. Ahn, J. Nanosci. Nanotechnol., 16, 10535 (2016). https://doi.org/10.1166/jnn.2016.13190
  9. M. Chen, B. Lou, Z. Ni and B. Xu, Electrochim. Acta, 165, 105 (2015). https://doi.org/10.1016/j.electacta.2015.03.007
  10. J. Cao, M. Guo, J. Wu, J. Xu, W. Wang and Z. Chen, J. Power Sources, 277, 155 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.017
  11. Y.-G. Lee, G.-H. An and H.-J. Ahn, J. Alloy. Compd., 751, 62 (2018). https://doi.org/10.1016/j.jallcom.2018.04.061
  12. Y. Zhou, D. M. King, X. Liang, J. Li and A. W. Weimer, Appl. Catal. B-Environ., 101, 54 (2010). https://doi.org/10.1016/j.apcatb.2010.09.005
  13. N. Jain, N. Ravishankar and G. Madras, Mol. Catal., 432, 88 (2017). https://doi.org/10.1016/j.mcat.2017.01.014
  14. N. C. T. Martins, J. Angelo, A. V. Girao, T. Trindade, L. Andrade and A. Mendes, Appl. Catal. B-Environ., 193, 67 (2016). https://doi.org/10.1016/j.apcatb.2016.04.016
  15. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  16. G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 22, 421 (2012). https://doi.org/10.3740/MRSK.2012.22.8.421
  17. J. M. Luque-Centeno, M. V. Martinez-Huertaa, D. Sebastian, G. Lemes, E. Pastor and M. J. Lazaro, Renew. Energy, 125, 182 (2018). https://doi.org/10.1016/j.renene.2018.02.073
  18. G.-H. An, H.-G. Jo and H.-J. Ahn, J. Alloy. Compd., 763, 250 (2018). https://doi.org/10.1016/j.jallcom.2018.05.313
  19. T. Sharifi, G. Hu, X. Jia and T. Wagberg, ACS Nano, 6, 8904 (2012). https://doi.org/10.1021/nn302906r
  20. P. A. Pepin, J. D. Lee, C. B. Murray and J. M. Vohs, ACS Catal., 8, 11834 (2018). https://doi.org/10.1021/acscatal.8b03081
  21. D.-Y. Shin, G.-H. An and H.-J. Ahn, J. Nanosci. Nanotechnol., 17, 8180 (2017). https://doi.org/10.1166/jnn.2017.15087
  22. G.-H. An, E.-H. Lee and H.-J. Ahn, Phys. Chem. Chem. Phys., 18, 14859 (2016). https://doi.org/10.1039/c6cp01964a
  23. Y. Li, C. Liu, Y. Liu, B. Feng, L. Li, H. Pan, W. Kellogg, D. Higgins and G. Wu, J. Power Sources, 286, 354 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.155
  24. D.-Y. Sin, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 25, 113 (2015). https://doi.org/10.3740/MRSK.2015.25.3.113
  25. B. Ruiz-Camacho, H. H. R. Santoyo, J. M. Medina-Flores and O. Alvarez-Martinez, Electrochim. Acta, 120, 344 (2014). https://doi.org/10.1016/j.electacta.2013.12.055
  26. J. Zhu, X. Zhao, M. Xiao, L. Liang, C. Liu, J. Liao and W. Xing, Carbon, 72, 114 (2014). https://doi.org/10.1016/j.carbon.2014.01.062