References
- C. N. Kingery and G. Bulmast, "Airblast Parameters From TNT Spherical Air Burst and Hemispherical Surface Burst," Ballistic Research Laboratories, pp. 1-124, 1984.
- W. E. Baker, P. A. Cox, P. S. Westine, J. J. Kulesz and R. A. Strehlow, "Explosion Hazards and Evaluation, Elsevier Science," New York, pp. 1-840, 1983.
- C. Wang, J. Ding, C. Shu and T. Li, "Threedimensional Ghost-fluid Large-scale Numerical Investigation on Air Explosion," Comput Fluids, Vol. 137, pp. 70-79, 2016. https://doi.org/10.1016/j.compfluid.2016.07.015
- A. M. Benselama, M. J.-P. William-Louis, F. Monnoyer and C. Proust, "A Numerical Study of the Evolution of the Blast Wave Shape in Tunnels," J. Hazard. Mater., Vol. 181 (1-3), pp. 609-616, 2010. https://doi.org/10.1016/j.jhazmat.2010.05.056
- D. Baek, B. Kim and J. J. Yoh, "Modeling the Effects of Aluminum and Ammonium Perchlorate Addition on the Detonation of the High Explosives C4H8O8N8(HMX) and C3H6O6N6(RDX)," J. Appl. Phys., Vol. 124, pp. 215905, 2018. https://doi.org/10.1063/1.5058155
- K. Kim, L. E. Fried and J. J. Yoh, "Understanding the Anisotropic Initiation Sensitivity of Shocked Pentaerythritol Tetranitrate Single Crystals," Appl. Phys. Lett., Vol. 103, pp. 131912, 2013. https://doi.org/10.1063/1.4823796
- M. Gwak, Y. Lee, K. Kim and J. J. Yoh, Deformable Wall Effects on the Detonation of Combustible Gas Mixture in a Thin-walled Tube, Int. J. Hydrog. Energy., Vol. 40 (7), pp. 3006-3014, 2015. https://doi.org/10.1016/j.ijhydene.2014.12.127
- M. Gwak, Y. Lee, K. Kim, H. Cho, S. J. Shin and J. J. Yoh, "All Eulerian Method of Computing Elastic Response of Explosively Pressurized Metal Tube," Combust. Theory Model., Vol. 21 (2), pp. 293-308, 2017. https://doi.org/10.1080/13647830.2016.1223352
- M. Katayama, A. Abe and A. Takeba, "Investigation on Mie-Grüneisen Type Shock Hugoniot Equation of State for Concrete," Int. J. Multiphys., Vol. 11 (3), pp. 255-264, 2017.
- L. Donahue, F. Zhang and R. C. Ripley, "Numerical Models for Afterburning of TNT Detonation Products in Air," Shock Waves, Vol. 23, pp. 559-573, 2013. https://doi.org/10.1007/s00193-013-0467-2
- J. Bell, M. Berger, J. Saltzman and M. Welcome, "Three-dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws," SIAM J. Sci. Comput., Vol. 15 (1), pp. 127-138, 1994. https://doi.org/10.1137/0915008
- M. J. Berger and P. Colella, "Local Adaptive Mesh Refinement for Shock Hydrodynamics," J. Comput. Phys., Vol. 82, pp. 64-84, 1989. https://doi.org/10.1016/0021-9991(89)90035-1
- Y. Lee, W. Lee, M. Gwak, K. Kim and J. J. Yoh, "A Reactive Flow Simulation for the Anisotropic Ignition of an Explosive Crystal using Adaptive Mesh Refinement," J. Appl. Phys., Vol. 124, pp. 145903, 2018. https://doi.org/10.1063/1.5051019
- E. Schnetter, S.H. Hawley and I. Hawke, "Evolutions in 3D Numerical Relativity using Fixed Mesh Refinement," Class. Quantum Gravity, Vol. 21, pp. 1465-1488, 2004. https://doi.org/10.1088/0264-9381/21/6/014
- P. J. Miller, "A Reactive Flow Model with Coupled Reaction Kinetics for Detonation and Combustion in Non-ideal Explosives," Mat. Res. Soc. Symp. Proc., Vol. 418, pp. 413-420, 1996. https://doi.org/10.1557/PROC-418-413
- C. Wang, J. Ding, C. Shu and T. Li, "Threedimensional Ghost-fluid Large-scale Numerical Investigation on Air Explosion," Comp and Flu. Vol. 137, pp. 70-79, 2016. https://doi.org/10.1016/j.compfluid.2016.07.015