DOI QR코드

DOI QR Code

Effects of Fine Contents on the Fracture Characteristics of Frozen Sand

세립분 함유량이 동결 사질토의 파괴특성에 미치는 영향

  • Hwang, Bumsik (Dept. of Civil & Environmental Engrg., Dankook Univ.) ;
  • Cho, Wanjei (Dept. of Civil & Environmental Engrg., Dankook Univ.)
  • 황범식 (단국대학교 토목환경공학과) ;
  • 조완제 (단국대학교 토목환경공학과)
  • Received : 2020.02.18
  • Accepted : 2020.03.24
  • Published : 2020.03.31

Abstract

In this research, three-point bending tests were performed using a rectangular frozen specimen with various fine contents and notch offset distance from the center of the specimen to investigate the fracture characteristic of the frozen sand. Based on the test results, mode I fracture toughness was calculated, and mixed-mode (mode I + II) fracture characteristics were investigated using the fracture energy which was calculated until the maximum point of the load-displacement curve. As the fine contents increase, the peak load and mode I fracture toughness increase until 10% fine contents. Furthermore, as the notch offset distance increases, the fracture energy required for crack start also increases due to the increase in mode II load at the crack tip.

동토의 세립분 함유량에 따른 파괴특성을 파악하기 위해 -10℃의 온도에서 다양한 세립분 함유량과 초기 노치(notch)의 위치를 조정한 직사각형 공시체를 제작하여 Three-point bending 시험을 수행하였다. 시험결과를 바탕으로 동토의 mode I 파괴인성(fracture toughness)을 산정하였으며, 하중-변형 곡선의 최대점까지의 fracture energy를 산정하여 동토의 mixed-mode(mode I + II) 파괴특성을 파악하였다. 시험결과, 최대하중 및 mode I 파괴인성은 세립분 함유량 10%까지 증가하다가 15%에서 다시 감소하는 경향을 나타내었다. 또한, 노치의 위치가 공시체 중심에서 멀어질수록 mode II 하중의 증가로 인해 균열이 진행하는데 필요한 fracture enenrgy가 증가하는 것으로 나타났으며, 세립분 함유량이 증가할수록 mode II 하중의 증가비율 또한 증가하는 것으로 나타났다.

Keywords

References

  1. Andersland, O.B. and Ladanyi, B. (2004), "Frozen Ground Engineering Second Edition", John Wiley & Sons, New York, pp.20-55.
  2. Anderson, D.M. and Morgenstern, N.R. (1973), "Physics, Chemistry and Mechanics of Frozen ground", National Academy of Sciences, pp.254-278
  3. Anderson, D.M. and Tice, A.R. (1972), "Predicting unfrozen water contents in frozen soils from surface area measurements", In Frost Action in Soil, Washington, D.C., National Academy of Science, pp.12-18.
  4. ASTM (2012), "Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials", ASTM International, West Conshohocken, PA, E399-12e2.
  5. ASTM (2018), "Standard test method for flexural strength of concrete (using simple beam with third-point loading)", ASTM International, West Conshohocken, PA, C78/C78M-18.
  6. Azmatch, T.F., Sego, D.C., Arenson, L.U., and Biggar, K.W. (2011), "Tensile strength and stress-strain behavior of Devon silt under frozen finge conditions", Cold Regions Science and Technology, Vol.68, pp.85-90. https://doi.org/10.1016/j.coldregions.2011.05.002
  7. Bourbonnais, J. and Ladanyi, B. (1985), "The mechanical behavior of frozen sand down to cryogenic temperature", International symposium on ground freezing, Vol.4, pp.235-244.
  8. Braham, A., Buttlar, W., and Ni, F. (2010), "Laboratory mixedmode cracking of asphalt concrete using the single-edge notch beam", Road Materials and Pavement Design, Vol.11, No.4, pp.947-968. https://doi.org/10.1080/14680629.2010.9690314
  9. Bragg, R.A. and Andersland, O.B. (1982), "Strain Rate, Temperature and Sample Size Effects on Compression and Tentil Properties of Frozen Sand", Developments in Geotechnical Engineeering, Vol.28, pp.35-46. https://doi.org/10.1016/B978-0-444-42010-7.50008-6
  10. Chae, D. (2015), "Long-term Performance Prediction of Frozen Sands varying Freezing Temperature and Fine Contents", Doctoral thesis, Dankook University (in Korean).
  11. Chae, D., Hwang, B., and Cho, W. (2015), "Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents", Journal of the Korean Geo-Environmental Society, Vol.16, No.6, pp.31-38 (in Korean). https://doi.org/10.14481/jkges.2015.16.6.31
  12. Dillon, H.B. and Andersland, O.B. (1966), "Predicting Unfrozen Water Contents in Frozen Soils", Can. geotech. J., Vol.3, No.2, pp.53-60. https://doi.org/10.1139/t66-007
  13. Haynes, F.D. and Karalius, J.A. (1977), "Effect of Temperature in the Strength of Frozen Silt", U.S. Army Cold Regions Research and Engineering Laboratory Research Report, 350.
  14. Hivon, E.G. and Sego, D.C. (1995), "Strength of Frozen Saline Soils", Can. Geotech. J., Vol.32, No.2, pp.336-354. https://doi.org/10.1139/t95-034
  15. Kim, Y.S. and Hong, S.S. (2018), "A Study on the Plant Construction for Development of Oil and Gas Resources in Extreme Environment", Proceeding of Korea Society of Civil Engineers, pp.224-225 (in Korean).
  16. Knott, J.F. (1973), "Fundamentals of fracture mechanics", Gruppo Italiano Frattura.
  17. Lee, B. (2005), "Research on Sustainable Development Based on the Polar Regions: Polar R&D Priority Setting and Polar Science & Technology Road Map", Korea Polar Reseearch Institute, BSPG 00403-008-3 (in Korean).
  18. Lee, J. (2016), "Construction Technology in Cold Regions", Review of Architecture and Building Science, Vol.60, No.5, pp.32-36 (in Korean).
  19. Li, H. and Yang, H. (2000), "Experimental Investigation of Fracture Toughness of Frozen Soil", J. of Cold Reg. Eng., ASCE, Vol.14, No.1, pp.43-49. https://doi.org/10.1061/(ASCE)0887-381X(2000)14:1(43)
  20. Li. H., Yang, H. and Liu, Z. (2000), "Experimental Investigation of Fracture Toughness K(IIC) of Frozen Soil", Can. Geotech. J., Vol.37, No.1, pp.253-258. https://doi.org/10.1139/t99-059
  21. Liu, X.Z. and Liu, P. (2011), "Experimental research on the compressive fracture toughness of wing fracture of frozen soil", Cold Reg. Sci. Tech., Vol.65, No.3, pp.421-428. https://doi.org/10.1016/j.coldregions.2010.11.006
  22. Sayles, F.H. (1968), "Creep of frozen sand", U.S. Army CRREL, Technical Report 190.
  23. Tada, H., Paris, P.C., and Irwin, G.R. (1985), "The stress analysis of cracks handbook (2nd ed.)", Paris productions, Inc., St. Louis.
  24. Ting, J.M. (1981), "The creep of frozen sands: Qualitative and quantitative models", Res. Rep. R81-5. Cambridge, Mass.: Dept of Civil Engineering, Massachusetts Institute of Technology.
  25. Vyalov, S.S. (1963), "Rheology of Frozen Soils", Proc. of the 1st Permafrost Conf. Lafayette, Ind., pp.332-342.
  26. Yamamoto, Y. and Springman, S. M. (2017), "Three- and fourpoint bending tests on artificial frozen soil samples at temperature close to $0^{\circ}C$", Cold Reg. Sci. and Tech., Vol.134, pp.20-32. https://doi.org/10.1016/j.coldregions.2016.11.003