DOI QR코드

DOI QR Code

Chemical Constituents from the Aerial Parts of Artemisia capillaris Thunb. and Their Anti-allergic and Anti-inflammatory Effects

  • Nguyen, Thi Thu (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Vu, Thi Oanh (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Cao, Thao Quyen (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Kim, Jeong Ah (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2019.12.09
  • Accepted : 2020.02.14
  • Published : 2020.03.31

Abstract

Artemisia capillaris Thunb. (Compositae) is a traditional medicinal plant with various pharmacological activities. To elucidate new anti-allergic and anti-inflammatory constituents, the aerial parts of A. capillaries were investigated to afford a new compound, (6E,8E)-6-methylundeca-6,8-diene-2,5,10-trione (17) together with 19 known compounds (1 - 16, 18 - 20). The structures of these compounds were determined by extensive spectroscopic analyses including 1D, 2D NMR, HREIMS, and optical rotation [α]D. The absolute configuration of compound 2 was determined to be S form for the first time. All isolates (1 - 20) were tested their inhibitory effects on interleukin 2 (IL-2) expression in T cells and NO production in lipopolysaccharide (LPS)-stimulated RAW246.7. Among them, compounds 10, 11, 19, and 20 reduced IL-2 expression in a dose-dependent manner. In addition, compound 10 also inhibited NO production with an IC50 value of 37.3 ± 0.4 μM.

Keywords

References

  1. Furue, M.; Terao, H.; Rikihisa, W.; Urabe, K.; Kinukawa, N.; Nose, Y.; Koga, T. Br. J. Dermatol. 2003, 148, 128-133. https://doi.org/10.1046/j.1365-2133.2003.04934.x
  2. Zedler, S.; Faist, E. Curr. Opin. Crit. Care 2006, 12, 595-601. https://doi.org/10.1097/MCC.0b013e3280106806
  3. Tabas, I.; Glass, C. K. Science 2013, 339, 166-172. https://doi.org/10.1126/science.1230720
  4. Moncada, S.; Palmer, R. M.; Higgs, E. Phramacol. Rev. 1991, 43, 109-142.
  5. Evans, C. H. Agents Actions Suppl. 1995, 47, 107-116.
  6. Puripattanavong, J.; Tewtrakul, S. Songklanakarin J. Sci. Technol. 2015, 37, 37-41.
  7. Justiz Vaillant, A. A.; Zito, P. M. Immediate Hypersensitivity Reactions; StatPearls Publishing: USA, 2019.
  8. Blaser, K. T Cell Regulation in Allergy, Asthma and Atopic Skin Diseases; Karger Medical and Scientific Publishers: USA, 2008, p 158.
  9. Abdel-Gadir, A.; Massoud, A. H.; Chatila, T. A. F1000Res. 2018, 7, 38. https://doi.org/10.12688/f1000research.12650.1
  10. Bonnet, B.; Vigneron, J.; Levacher, B.; Vazquez, T.; Pitoiset, F.; Brimaud, F.; Churlaud, G.; Klatzmann, D.; Bellier, B. J. Immunol. 2016, 197, 188-198. https://doi.org/10.4049/jimmunol.1501271
  11. Yang, X. O.; Nurieva, R.; Martinez, G. J.; Kang, H. S.; Chung, Y.; Pappu, B. P.; Shah, B.; Chang, S. H.; Schluns, K. S.; Watowich, S. S.; Feng, X. H.; Jetten, A. M.; Dong, C. Immunity 2008, 29, 44-56. https://doi.org/10.1016/j.immuni.2008.05.007
  12. Wu, T. S.; Tsang, Z. J.; Wu, P. L.; Lin, F. W.; Li, C. Y.; Teng, C. M.; Lee, K. H. Bioorg. Med. Chem. 2001, 9, 77-83. https://doi.org/10.1016/S0968-0896(00)00225-X
  13. Zhao, Y.; Geng, C. A.; Sun, C. L.; Ma, Y. B.; Huang, X. Y.; Cao, T. W.; He, K.; Wang, H.; Zhang, X. M.; Chen, J. J. Fitoterapia 2014, 95, 187-193. https://doi.org/10.1016/j.fitote.2014.03.017
  14. Hong, J. H.; Lee, I. S. Biofactors 2009, 35, 380-388. https://doi.org/10.1002/biof.35
  15. Lu, C.; Li, Y.; Hu, S.; Cai, Y.; Yang, Z.; Peng, K. Biomed. Pharmacother. 2018, 106, 1169-1174. https://doi.org/10.1016/j.biopha.2018.07.062
  16. Geng, C. A.; Yang, T. H.; Huang, X. Y.; Yang, J.; Ma, Y. B.; Li, T. Z.; Zhang, X. M.; Chen, J. J. J. Ethnopharmacol. 2018, 224, 283-289. https://doi.org/10.1016/j.jep.2018.06.005
  17. Kim, Y. S.; Bahn, K. N.; Hah, C. K.; Gang, H. I.; Ha, Y. L. J. Food Sci. 2008, 73, T16-T20. https://doi.org/10.1111/j.1750-3841.2007.00585.x
  18. Lim, D. W.; Kim, Y. T.; Jang, Y. J.; Kim, Y. E.; Han, D. Molecules 2013, 18, 9241-9252. https://doi.org/10.3390/molecules18089241
  19. Ding, H. Y.; Lin, H. C.; Teng, C. M.; Wu, Y. C. J. Chin. Chem. Soc. 2000, 47, 381-388. https://doi.org/10.1002/jccs.200000051
  20. Camps, P.; Gonzalez, A.; Munoz-Torrero, D.; Simon, M.; Zuniga, A.; Martins, M. A.; Font-Bardia, M.; Solans, X. Tetrahedron 2000, 56, 8141-8151. https://doi.org/10.1016/S0040-4020(00)00680-3
  21. Vijayan, N.; Bhagavannarayana, G.; Maurya, K. K.; Pal, S.; Datta, S. N.; Gopalakrishnan, R.; Ramasamy, P. Cryst. Res. Technol. 2007, 42, 195-200. https://doi.org/10.1002/crat.200610796
  22. Neirinck, V.; Robert, D.; Nardin, R. Magn. Reson. Chem. 1993, 31, 815-822. https://doi.org/10.1002/mrc.1260310905
  23. Morales-Rios, M. S.; Espineira, J.; Joseph-Nathan, P. Magn. Reson. Chem. 1987, 25, 377-395. https://doi.org/10.1002/mrc.1260250502
  24. Jorgensen, M. R.; Olsen, C. A.; Mellor, I. R.; Usherwood, P. N.; Witt, M.; Franzyk, H.; Jaroszewski, J. W. J. Med. Chem. 2005, 48, 56-70. https://doi.org/10.1021/jm049906w
  25. Sankar, S. S.; Gilbert, R. D.; Fornes, R. E. Org. Magn. Reson. 1982, 19, 222-224. https://doi.org/10.1002/mrc.1270190413
  26. Lee, S.; Kim, K. S.; Shim, S. H.; Park, Y. M.; Kim, B. K. Arch. Pharm. Res. 2003, 26, 902-905. https://doi.org/10.1007/bf02980197
  27. Ali, M. S.; Jahangir, M.; Saleem, M. Nat. Prod. Res. 2003, 17, 1-4. https://doi.org/10.1080/10575630290020640
  28. Park, Y.; Moon, B. H.; Lee, E.; Lee, Y.; Yoon, Y.; Ahn, J. H.; Lim, Y. Magn. Reson. Chem. 2007, 45, 674-679. https://doi.org/10.1002/mrc.2010
  29. Liu, Y. L.; Ho, D. K.; Cassady, J. M.; Cook, V. M.; Baird, W. M. J. Nat. Prod. 1992, 55, 357-363. https://doi.org/10.1021/np50081a012
  30. Gonzalez, A. G.; Estevez-Reyes, R.; Mato, C. J. Nat. Prod. 1989, 52, 1139-1142. https://doi.org/10.1021/np50065a037
  31. Xie, L. H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Chem. Pharm. Bull. 2003, 51, 508-515. https://doi.org/10.1248/cpb.51.508
  32. Brockmann Jr, H.; Knobloch, G. Chem. Ber. 1973, 106, 803-811. https://doi.org/10.1002/cber.19731060309
  33. Zhang, J.; Liang, Y.; Liao, X. J.; Deng. Z.; Xu. S. H. Nat. Prod. Res. 2014, 28, 150-155. https://doi.org/10.1080/14786419.2013.857668
  34. Wu, Y.; Su, J.; Guo, R. X.; Ren, T. K.; Zhang, M. L.; Dong, M.; Sauriol, F.; Shi, Q. W.; Gu, Y. C.; Huo, C. H. Chem. Nat. Compd. 2014, 50, 603-605. https://doi.org/10.1007/s10600-014-1033-6
  35. Kai, H.; Baba, M.; Okuyama, T. Chem. Pharm. Bull. 2007, 55, 133-136. https://doi.org/10.1248/cpb.55.133
  36. Bernart, M. W.; Cardellina, J. H.; Balaschak, M. S.; Alexander, M. R.; Shoemaker, R. H.; Boyd, M. R. J. Nat. Prod. 1996, 59, 748-753. https://doi.org/10.1021/np960224o
  37. Nesterenko, V.; Putt, K. S.; Hergenrother, P. J. J. Am. Chem. Soc. 2003, 125, 14672-14673. https://doi.org/10.1021/ja038043d
  38. Khoo, B. Y.; Chua, S. L.; Balaram, P. Int. J. Mol. Sci. 2010, 11, 2188-2199. https://doi.org/10.3390/ijms11052188