DOI QR코드

DOI QR Code

A Study on the Behaviour of Baekma River Sands Using Elasto-Plastic Hyperbolic Model

탄·소성 쌍곡선 모델을 이용한 백마강 모래의 거동특성 연구

  • Received : 2020.03.12
  • Accepted : 2020.03.25
  • Published : 2020.03.30

Abstract

In order to predict the nonlinear behaviour of the soil, the elasto-plastic hyperbolic model was selected, which was considered to be relatively simple and highly predictable. The soil parameter determination and the behavior analysis program were developed by formalizing the functions related to the constitutive model. Each soil parameter was determined from the results of the drained triaxial compression tests of Baekma river sand with the change of relative density. The stress-strain behavior was predicted using the soil parameters determined under each condition. As a result, the deviator stress for the axial strain is verified to have a good match between the measured value and predicted value at each relative density. In the relationship between the volumetric stain and the axial strain, when the relative density is loose, the measured value and predicted value tend to match, and when relative density is dense, the predicted value of the volumetric strain appears somewhat smaller than the measured value due to the limitation of the constitutive model.

흙의 비선형적 거동특성을 예측하기 위해 비교적 간편하고 예측의 정도가 높은 것으로 평가되는 탄·소성 쌍곡선모델을 선정하였다. 모델의 특성을 알아보기 위해 구성모델에 관련된 함수를 정식화하여 토질매개변수 결정 및 거동해석 프로그램을 개발하였다. 상대밀도 변화에 따른 백마강모래의 배수삼축압축시험 결과로부터 각각의 토질매개변수를 결정하였고 상대밀도에 따른 토질매개변수의 변화 특성을 분석하였으며 각각의 조건에서 결정된 토질매개변수를 이용하여 응력-변형률 거동을 예측하였다. 그 결과 축변형률에 대한 축차응력은 각각의 상대밀도에서 측정치와 예측치가 양호하게 일치하는 것을 확인하였고 축변형률에 대한 체적변형률의 관계에서 상대밀도가 작은 경우는 측정치와 예측치가 일치하는 경향을 보이나 상대밀도가 큰 경우에는 구성모델의 한계로 인해 체적변형률의 예측치가 측정치보다 다소 작게 나타나는 것을 확인 하였다.

Keywords

References

  1. Clough, R. W. and Duncan, J. M. (1971), "Finite element analysis of retaining wall behaviour", J. Soil mech. and Found. Div., ASCE, Vol.97, No.SM12, pp.1657-1673. https://doi.org/10.1061/JSFEAQ.0001713
  2. Dickin, E. A. and King, G. J. W. (1982), "The behaviour of hyperbolic stress-strain models in triaxial plane strain compression", International Symposium on Numerical Model in Geomechanics, Zurich September 13-17, pp.303-311.
  3. Drucker, D. C., Gibson, R. E. and Henkel, D. J. (1957), "Soil Mechanics and Work Hardening Theories of Plasticity", Trans, Vol.122, pp.333-345.
  4. Duncan, M. J. and Chang, C. Y. (1970), "Nonlinear Analysis of Stress and Strain in Soil", Journal of the Geotechnical Engineering Division, ASCE, Vol.96, No.SM5, pp.1629-1653.
  5. Kim, C. K. (1994), "A study on the behavior of granular soil based on elasto-plastic constitutive model", Ph. D. Dissertation, Wonkwang University.
  6. Kondnor, R. L. (1963), "Hyperbolic Stress-Strain Response: Cohesive Soils", Journal of the Geotechnical Engineering Division, ASCE, Vol.89, No.SM1, pp.115-143.
  7. Lade, P. V. (1972), "The Stress-Strain and Strength Characteristics of Cohesionless Soil", Ph. D. Dissertation, University of California, Berkeley.
  8. Lade, P. V. and Duncan, J. M. (1975), "Elasto-Plastic stressstrain theory for cohesionless soil", Journal of the Geotechnical Engineering Division, ASCE, Vol.101, GT10, pp.1037-1053. https://doi.org/10.1061/AJGEB6.0000204
  9. Roscoe, K. H. and Poorooshasb, H. B. (1963a), "A Theoretical and Experimental Study of Strain in Triaxial Tests on Normally Consolidated Clays", Geotechnique, London, England, Vol.13, pp.12-28. https://doi.org/10.1680/geot.1963.13.1.12