DOI QR코드

DOI QR Code

Importance of CADASIL research in Jeju: a review and update on epidemiology, diagnosis, and clinical spectrum

제주도에서 CADASIL 연구의 중요성: 역학, 진단 및 임상양상에 대한 고찰

  • Choi, Jay Chol (Department of Neurology, Jeju National University Hospital) ;
  • Lee, Jung Seok (Department of Neurology, Jeju National University Hospital) ;
  • Kim, Kitae (Department of Neurology, Seoul National University Bundang Hospital)
  • 최재철 (제주대학교 의과대학 신경과학 교실) ;
  • 이정석 (제주대학교 의과대학 신경과학 교실) ;
  • 김기태 (분당서울대학교병원 신경과)
  • Received : 2020.11.22
  • Accepted : 2020.12.17
  • Published : 2020.12.31

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a single-gene disease of the cerebral small blood vessels caused by mutations in the NOTCH3 gene on chromosome 19. Although CADASIL was known as a rare disease, recent research has suggested that the NOTCH variants could be found frequently even in the general population. The main clinical features included recurrent stroke, migraine, psychiatric symptoms, and progressive cognitive decline. On brain magnetic resonance imaging, patients with CADASIL showed multifocal white matter hyperintensity lesions, lacunar infarcts, microbleeds, and brain atrophy. Among them, lacunar infarcts and brain atrophy are important in predicting the clinical outcomes of patients with CADASIL. In the Jeju National University Hospital, we have diagnosed 213 CADASIL patients from 2004 to 2020. Most NOTCH3 mutations were located in exon 11 (94.4%), and p.Arg544Cys was the most common mutation. The mean age at diagnosis was 61.0±12.8 years. The most common presenting symptoms were ischemic stroke (24.4%), followed by cognitive impairment(15.0%), headache (8.9%), and dizziness(8.0%). Although the exact prevalence of CADASIL in Jeju is still unknown, the disease prevalence could be as high as 1% of the population considering the prevalence reported in Taiwan. Therefore, it is necessary to discover efficient biomarkers and genetic tests that can accurately screen and diagnose patients suspected of having CADASIL in this region. Ultimately, it is urgent to explore the exact pathogenesis of the disease to identify leading substances of treatment potential, and for this, multi-disciplinary research through active support from the Jeju provincial government as well as the national government is essential.

Keywords

References

  1. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707-10. https://doi.org/10.1038/383707a0
  2. Choi JC. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a genetic cause of cerebral small vessel disease. J Clin Neurol 2010;6:1-9. https://doi.org/10.3988/jcn.2010.6.1.1
  3. Rho NK, Choi SJ, Lee ES. A Case of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) Diagnosed by Skin Biopsy. Korean J Dermatol 2002;40:1136-8.
  4. Choi JC, Kang SY, Kang JH, Park JK. Intracerebral hemorrhages in CADASIL. Neurology 2006;67:2042-4. https://doi.org/10.1212/01.wnl.0000246601.70918.06
  5. Choi JC, Lee KH, Song SK, Lee JS, Kang SY, Kang JH. Screening for NOTCH3 gene mutations among 151 consecutive Korean patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2013;22:608-14. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.10.013
  6. Choi JC, Song SK, Lee JS, Kang SY, Kang JH. Diversity of stroke presentation in CADASIL: study from patients harboring the predominant NOTCH3 mutation R544C. J Stroke Cerebrovasc Dis 2013;22:126-31. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.07.002
  7. Choi JC, Song SK, Lee JS, Kang SY, Kang JH. Headache among CADASIL patients with R544C mutation: prevalence, characteristics, and associations. Cephalalgia 2014;34:22-8. https://doi.org/10.1177/0333102413497598
  8. Kang SY, Oh JH, Kang JH, Choi JC, Lee JS. Nerve conduction studies in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neurol 2009;256:1724-7. https://doi.org/10.1007/s00415-009-5191-6
  9. Lee JS, Choi JC, Kang SY, Kang JH, Lee SH, Kim JH, et al. Olfactory identification deficits in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Eur Neurol 2010;64:280-5. https://doi.org/10.1159/000320942
  10. Lee JS, Ko K, Oh JH, Park JH, Lee HK, Floriolli D, et al. Cerebral microbleeds, hypertension, and intracerebral hemorrhage in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Front Neurol 2017;8:203. https://doi.org/10.3389/fneur.2017.00203
  11. Razvi SS, Davidson R, Bone I, Muir KW. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 2005;76:739-41. https://doi.org/10.1136/jnnp.2004.051847
  12. Rutten JW, Dauwerse HG, Gravesteijn G, van Belzen MJ, van der Grond J, Polke JM, et al. Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 2016;3:844-53. https://doi.org/10.1002/acn3.344
  13. Lee YC, Chung CP, Chang MH, Wang SJ, Liao YC. NOTCH3 cysteine-altering variant is an important risk factor for stroke in the Taiwanese population. Neurology 2020;94:e87-e96. https://doi.org/10.1212/wnl.0000000000008700
  14. Mizuno T, Mizuta I, Watanabe-Hosomi A, Mukai M, Koizumi T. Clinical and Genetic Aspects of CADASIL. Front Aging Neurosci 2020;12:91. https://doi.org/10.3389/fnagi.2020.00091
  15. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol 2009;8:643-53. https://doi.org/10.1016/S1474-4422(09)70127-9
  16. Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Longterm prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain 2004;127:2533-9. https://doi.org/10.1093/brain/awh282
  17. Adib-Samii P, Brice G, Martin RJ, Markus HS. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 2010;41:630-4. https://doi.org/10.1161/strokeaha.109.568402
  18. Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain 2009;132:933-9. https://doi.org/10.1093/brain/awn364
  19. Vinciguerra C, Rufa A, Bianchi S, Sperduto A, De Santis M, Malandrini A, et al. Homozygosity and severity of phenotypic presentation in a CADASIL family. Neurol Sci 2014;35:91-3. https://doi.org/10.1007/s10072-013-1580-9
  20. Tuominen S, Juvonen V, Amberla K, Jolma T, Rinne JO, Tuisku S, et al. Phenotype of a homozygous cadasil patient in comparison to 9 age-matched heterozygous patients with the same R133C Notch3 mutation. Stroke 2001;32:1767-74. https://doi.org/10.1161/01.str.32.8.1767
  21. Soong B-W, Liao Y-C, Tu P-H, Tsai P-C, Lee IH, Chung C-P, et al. A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. J Chin Med Assoc 2013;76:319-24. https://doi.org/10.1016/j.jcma.2013.03.002
  22. Ragno M, Pianese L, Morroni M, Cacchio G, Manca A, Di Marzio F, et al. "CADASIL coma" in an Italian homozygous CADASIL patient: comparison with clinical and MRI findings in agematched heterozygous patients with the same G528C NOTCH3 mutation. Neurol Sci 2013;34:1947-53. https://doi.org/10.1007/s10072-013-1418-5
  23. Liem MK, Lesnik Oberstein SAJ, Vollebregt MJ, Middelkoop HAM, van der Grond J, Helderman-van den Enden ATJM. Homozygosity for a NOTCH3 mutation in a 65-year-old CADASIL patient with mild symptoms. J Neurol 2008;255:1978-80. https://doi.org/10.1007/s00415-009-0036-x
  24. Anamnart C, Songsaeng D, Chanprasert S. A large number of cerebral microbleeds in CADASIL patients presenting with recurrent seizures: a case report. BMC Neurology 2019;19:106. https://doi.org/10.1186/s12883-019-1342-2
  25. Lee JS, Ko K, Oh JH, Park JH, Lee HK. Phenotypic features of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy subjects with R544C mutation. Dement Neurocogn Disord 2016;15:15-9. https://doi.org/10.12779/dnd.2016.15.1.15
  26. Rutten JW, Van Eijsden BJ, Duering M, Jouvent E, Opherk C, Pantoni L, et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7-34 pathogenic variant. Genet Med 2019;21:676-82. https://doi.org/10.1038/s41436-018-0088-3
  27. Lee JS, Ko KH, Oh J-H, Kim J-G, Kang C-H, Song S-K, et al. Apolipoprotein E ε4 Is Associated with the development of incident dementia in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy patients with p.Arg-544Cys mutation. Front Aging Neurosci. 2020;12.
  28. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689-701. https://doi.org/10.1016/S1474-4422(10)70104-6
  29. Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology 2009;72:143-8. https://doi.org/10.1212/01.wnl.0000339038.65508.96
  30. Liem MK, van der Grond J, Haan J, van den Boom R, Ferrari MD, Knaap YM, et al. Lacunar infarcts are the main correlate with cognitive dysfunction in CADASIL. Stroke 2007;38:923-8. https://doi.org/10.1161/01.str.0000257968.24015.bf
  31. Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O'Sullivan M, et al. Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 2007;69:172-9. https://doi.org/10.1212/01.wnl.0000265221.05610.70
  32. Lee JS, Choi JC, Kang SY, Kang JH, Na HR, Park JK. Effects of lacunar infarctions on cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Clin Neurol 2011;7:210-4. https://doi.org/10.3988/jcn.2011.7.4.210
  33. Lee JS, Kang CH, Park SQ, Choi HA, Sim KB. Clinical significance of cerebral microbleeds locations in CADASIL with R544C NOTCH3 mutation. PLoS One 2015;10:e0118163. https://doi.org/10.1371/journal.pone.0118163
  34. Primo V, Graham M, Bigger-Allen AA, Chick JM, Ospina C, Quiroz YT, et al. Blood biomarkers in a mouse model of CADASIL. Brain Res 2016;1644:118-26. https://doi.org/10.1016/j.brainres.2016.05.008
  35. Duering M, Konieczny MJ, Tiedt S, Baykara E, Tuladhar AM, Leijsen EV, et al. Serum neurofilament light chain levels are related to small vessel disease burden. J Stroke 2018;20:228-38. https://doi.org/10.5853/jos.2017.02565
  36. Gravesteijn G, Rutten JW, Verberk IMW, Bohringer S, Liem MK, van der Grond J, et al. Serum Neurofilament light correlates with CADASIL disease severity and survival. Ann Clin Transl Neurol 2019;6:46-56. https://doi.org/10.1002/acn3.678
  37. Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler 2012;18:552-6. https://doi.org/10.1177/1352458512443092
  38. Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012;3:81.
  39. Parks AL, Klueg KM, Stout JR, Muskavitch MA. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 2000;127:1373-85. https://doi.org/10.1242/dev.127.7.1373