DOI QR코드

DOI QR Code

Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction

  • Kanase, Rohini Subhash (Interdisciplinary Program for Photonic Engineering, Chonnam National University) ;
  • Kang, Soon Hyung (Department of Chemistry Education and Optoelectronic Convergence Research Center, Chonnam National University)
  • Received : 2020.10.22
  • Accepted : 2020.12.16
  • Published : 2020.12.30

Abstract

Copper has been proved to be the best catalyst for electrochemical CO2 reduction reaction, however, for optimal efficiency and selectivity, its performance requires improvements. Electrochemical CO2 reduction reaction (RR) using CuO nanowire electrode was performed with different concentrations of KHCO3 electrolyte (0.1 M, 0.5 M, and 1 M). Cu(OH)2 was formed on Cu foil, followed by thermal-treatment at 200℃ under the air atmosphere for 2 hrs to transform it to the crystalline phase of CuO. We evaluated the effects of different KHCO3 electrolyte concentrations on electrochemical CO2 reduction reaction (RR) using the CuO nanowire electrode. At a constant current (5mA), low concentrated bicarbonate exhibited a more negative potential -0.77 V vs. Reversible Hydrogen Electrode (RHE) (briefly abbreviated as VRHE), while the negative potential reduced to -0.33 VRHE in the high concentration of bicarbonate solution. Production of H2 and CH4 increased with an increased concentration of electrolyte (KHCO3). CH4 production efficiency was high at low negative potential whereas HCOOH was not influenced by bicarbonate concentration. Our study provides insights into efficient, economically viable, and sustainable methods of mitigating the harmful environmental effects of CO2 emission.

Keywords

References

  1. S. Shin, S. Kim, S. Jang, and J. Kim, "A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers", J. Microelectron. Packag. Soc., 27(3), 69 (2020). https://doi.org/10.6117/KMEPS.2020.27.3.069
  2. C. Kim, T. Eom, M. S. Jee, H. Jung, H. Kim, B. K. Min, and Y. J. Hwang, "Insight into Electrochemical CO2 Reduction on Surface-Molecule-Mediated Ag Nanoparticles", ACS Catal., 7, 779 (2017). https://doi.org/10.1021/acscatal.6b01862
  3. D. Gao, H. Zhou, F. Cai, J. Wang, G. Wang, and X. Bao, "PdContaining Nanostructures for Electrochemical CO2 Reduction Reaction", ACS Catal., 8, 1510 (2018). https://doi.org/10.1021/acscatal.7b03612
  4. F. Quan, D. Zhong, H. Song, F. Jia, and L. Zhang, "A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution", J. Mater. Chem. A., 3, 16409 (2015). https://doi.org/10.1039/C5TA04102C
  5. S. Mezzavilla, S. Horch, I. E. L. Stephens, B. Seger, and I. Chorkendorff, "Structure Sensitivity in the Electrocatalytic Reduction of CO2 with Gold Catalysts", Angew. Chem. Int. Ed., 58, 3774 (2019). https://doi.org/10.1002/anie.201811422
  6. S. Y. Lee, H. Jung, N. K. Kim, H. S. Oh, B. K. Min, and Y. J. Hwang, "Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO2 Reduction", J. Am. Chem. Soc., 140, 8681 (2018). https://doi.org/10.1021/jacs.8b02173
  7. Q. Tang, Y. Lee, D. Y. Li, W. Choi, C. W. Liu, D. Lee, and D. E. Jiang, "Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters", J. Am. Chem. Soc., 139, 9728 (2017). https://doi.org/10.1021/jacs.7b05591
  8. J. Zhao, J. Zhao, F. Li, and Z. Chen, "Copper dimer supported on a C2N layer as an efficient electrocatalyst for CO2 reduction reaction: A computational study", J. Phys. Chem. C., 122, 19712 (2018). https://doi.org/10.1021/acs.jpcc.8b06494
  9. S. Neatu, J. A. Macia-Agullo, P. Concepcion, and H. Garcia, "Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water", J. Am. Chem. Soc., 136, 15969 (2014). https://doi.org/10.1021/ja506433k
  10. D. Raciti and C. Wang, "Recent Advances in CO2 Reduction Electrocatalysis on Copper", ACS Energy Lett., 3, 1545 (2018). https://doi.org/10.1021/acsenergylett.8b00553
  11. J. D. Goodpaster, A. T. Bell, and M. Head-Gordon, "Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model", J. Phys. Chem. Lett., 7, 1471 (2016). https://doi.org/10.1021/acs.jpclett.6b00358
  12. H. Xiao, T. Cheng, and W. A. Goddard, "Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)", J. Am. Chem. Soc., 139, 130 (2017). https://doi.org/10.1021/jacs.6b06846
  13. I. Takahashi, O. Koga, N. Hoshi, and Y. Hori, "Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes", J. Electroanal. Chem., 533, 135 (2002). https://doi.org/10.1016/S0022-0728(02)01081-1
  14. Y. B. Shin, Y. H. Ju, and J. W. Kim, "Technical Trends of Metal Nanowire-Based Electrode", J. Microelectron. Packag. Soc., 26(4), 15 (2019).
  15. T. Yoshioka, H. Matsushima, and M. Ueda, "In situ observation of Cu electrodeposition and dissolution on Au(100) by high-speed atomic force microscopy", Electrochem. Commun., 92, 29 (2018). https://doi.org/10.1016/j.elecom.2018.05.019
  16. L. Cao, D. Raciti, C. Li, K. J. T. Livi, P. F. Rottmann, K. J. Hemker, T. Mueller, and C. Wang, "Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires", ACS Catal., 7, 8578 (2017). https://doi.org/10.1021/acscatal.7b03107
  17. D. Raciti, L. Cao, K. J. T. Livi, P. F. Rottmann, X. Tang, C. Li, Z. Hicks, K. H. Bowen, K. J. Hemker, T. Mueller, and C. Wang, "Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires", ACS Catal., 7, 4467 (2017). https://doi.org/10.1021/acscatal.7b01124
  18. G. Z. Kyriacou and A. K. Anagnostopoulos, "Influence of CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction", J. Appl. Electrochem., 23, 483 (1993). https://doi.org/10.1007/BF00707626
  19. K. Hara, A. Tsuneto, A. Kudo, and T. Sakata, "Electrochemical Reduction of CO2 on a Cu Electrode under High Pressure: Factors that Determine the Product Selectivity", J. Electrochem. Soc., 141, 2097 (1994). https://doi.org/10.1149/1.2055067
  20. C. F. C. Lim, D. A. Harrington, and A. T. Marshall, "Effects of mass transfer on the electrocatalytic CO2 reduction on Cu", Electrochim. Acta., 238, 56 (2017). https://doi.org/10.1016/j.electacta.2017.04.017
  21. S. E. Weitzner, S. A. Akhade, J. B. Varley, B. C. Wood, M. Otani, S. E. Baker, and E. B. Duoss, "Toward Engineering of Solution Microenvironments for the CO2 Reduction Reaction: Unraveling pH and Voltage Effects from a Combined Density-Functional-Continuum Theory", J. Phys. Chem. Lett., 11, 4113 (2020). https://doi.org/10.1021/acs.jpclett.0c00957
  22. H. Zhong, K. Fujii, Y. Nakano, and F. Jin, "Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage", J. Phys. Chem. C., 119, 55 (2015). https://doi.org/10.1021/jp509043h
  23. M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, and A. T. Bell, "Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu", J. Am. Chem. Soc., 138, 13006 (2016). https://doi.org/10.1021/jacs.6b07612
  24. J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, and A. T. Bell, "Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide", J. Am. Chem. Soc., 139, 11277 (2017). https://doi.org/10.1021/jacs.7b06765
  25. R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, and G. Mul, "Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions", ChemElectroChem, 2(3), 354 (2015). https://doi.org/10.1002/celc.201402373
  26. N. Gupta, M. Gattrell, and B. MacDougall, "Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions", J. Appl. Electrochem., 36, 161 (2006). https://doi.org/10.1007/s10800-005-9058-y
  27. A. S. Varela, M. Kroschel, T. Reier, and P. Strasser, "Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH", Catal. Today., 260, 8 (2016). https://doi.org/10.1016/j.cattod.2015.06.009
  28. M. R. Singh, E. L. Clark, and A. T. Bell, "Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide", Phys. Chem. Chem. Phys., 17, 18924 (2015). https://doi.org/10.1039/c5cp03283k
  29. M. Ma, K. Djanashvili, and W. A. Smith, "Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays", Angew. Chem. Int. Ed., 55, 6680 (2016). https://doi.org/10.1002/anie.201601282
  30. S. Sen, S. M. Brown, M. L. Leonard, and F. R. Brushett, "Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes", J. Appl. Electrochem., 49, 917 (2019). https://doi.org/10.1007/s10800-019-01332-z
  31. G. H. Du and G. Van Tendeloo, "Cu(OH)2 nanowires, CuO nanowires, and CuO nanobelts", Chem. Phys. Lett., 393, 64 (2004). https://doi.org/10.1016/j.cplett.2004.06.017
  32. K. Sahu, B. Satpati, and S. Mohapatra, "Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol", Catal. Lett., 149, 2519 (2019). https://doi.org/10.1007/s10562-019-02817-4
  33. Y. Hori, H. Wakebe, T. Tsukamoto, and O. Koga, "Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media", Electrochim. Acta., 39, 1833 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
  34. Y. Hori, "Electrochemical CO2 Reduction on Metal Electrodes", pp.89-189 Modern aspects of electrochemistry, Springer, New York, NY (2008).
  35. Z. Lyu, S. Zhu, M. Xie, Y. Zhang, Z. Chen, R. Chen, M. Tian, M. Chi, M. Shao, and Y. Xia, "Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction", Angew. Chem., (2020).