References
- J. S. Lee & H. Y..Choi. (2018). Ministry of Science and ICT, Korea Internet & Security Agency, 2018 Internet Usage Survey, National Approved Statistics No. 120005
- S. K. Myung. (2015). Smartphones and health. J Korean Med Assoc. 58(1), :42-48. DOI: 10.5124/jkma.2015.58.1.42
- L. Hardell. (2017). World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review). Int J Oncol. 51(2), 405-413. DOI: 10.3892/ijo.2017.4046
- P. S. Deshmukh et al. (2015). Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol. 34(3), 284-290. DOI: 10.1177/1091581815574348.
- M. Klose et al. (2014). Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiat Res. 182(4), 435-447. DOI: 10.1667/RR13695.1.
- M. Foerster, A. Thielens, W. Joseph, M. Eeftens & M. Roosli. (2018). A Prospective Cohort Study of Adolescents' Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. Environ Health Perspect. 126(7), 077007. DOI: 10.1289/EHP2427.
- J. A, Boulant, & H. N. Demieville. (1977). Responses of thermosensitive preoptic and septal neurons to hippocampal and brain stem stimulation. J Neurophysiol. 40(6), 1356-1368. DOI: 10.1152/jn.1977.40.6.1356.
- S. Y. Yau et al. (2011). Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PloS one, 6(9), e24263. DOI : 10.1371/journal.pone.0024263.
- V. A. Redila & B. R. Christie. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137, 1299-1307. DOI : 10.1016/j.neuroscience.2005.10.050.
- K. Erickson et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 108, 3017-3022. DOI : 10.1073/pnas.1015950108.
- B. S. McEwen et al. (1993). Adrenal steroids and plasticity of hippocampal neurons: toward an understanding of underlying cellular and molecular mechanisms. Cell Mol Neurobiol 13, 457-482. DOI: 10.1007/bf00711583.
- C. Marinangeli et al. (2018). AMP-Activated Protein Kinase Is Essential for the Maintenance of Energy Levels during Synaptic Activation. Science. 9, 1-13. DOI : 10.1016/j.isci.2018.10.006.
- S. Y. Yau et al. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A. 111(44), 15810-15815. DOI : 10.1073/pnas.1415219111.
- T. G. Boulton et al. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65(4), 663-675. DOI : 10.1016/0092-8674(91)90098-j.
- G. M. Thomas & R. L. Huganir. (2004). MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 5(3):173-183. DOI : 10.1038/nrn1346.
- M. S. Lee, C. S. Oh, J. H. Ryu, J.-K. Lee & M. J. Kim. (2018). Alterations in Spontaneous Movement, Corticosterone, and Cytokines in Mice Exposed to 835 MHz Radiofrequency Radiation. Korean J Phys Anthropol, 31(1), 19-26. DOI : 10.11637/kjpa.2018.31.1.19.
- S. P. Loughran et al. (2016). Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). Int J Environ Res Public Health. 13(10), 967. DOI : 10.3390/ijerph13100967.
- G. J. Rubin, R. Nieto-Hernandez, & S. Wessely. (2010). Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies. Bioelectromagnetics. 31(1), 1-11. DOI : 10.1002/bem.20536.
- B. E. Crute, K. Seefeld, J. Gamble, B. E. Kemp, & L. A. Witters. (1998). Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 273(52):35347-35354. DOI : 10.1074/jbc.273.52.35347.
- S. A. Hawley et al. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 271(44), 27879-27887. DOI : 10.1074/jbc.271.44.27879.
- M. Momcilovic, S. P. Hong & M. Carlson. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 281(35), 25336-25343. DOI : 10.1074/jbc.M604399200.
-
A. Woods et al. (2005).
$Ca^{2+}$ /calmodulin- dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2(1), 21-33. DOI : 10.1016/j.cmet.2005.06.005. - B. B. Kahn, T. Alquier, D. Carling & D. G. Hardie. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1(1), 15-25. DOI : 10.1016/j.cmet.2004.12.003.
- K. S. Lee, J. S. Choi, S. Y. Hong, T. H. Son & K. Yu. (2008). Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics. 2008 Jul;29(5), 371-379. DOI : 10.1002/bem.20395.
- M. R. Bruchas, M. Xu & C. Chavkin. (2008). Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport. 19(14), 1417-1422. DOI : 10.1097/WNR.0b013e32830dd655.
- Q. Ding, Z. Ying & F. Gómez-Pinilla. (2011). Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 192, 773-780. DOI : 10.1016/j.neuroscience.2011.06.032.
- H. S. Um et al. (2011). Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neurosci Res. 69(2), 161-173. DOI : 10.1016/j.neures.2010.10.004.