DOI QR코드

DOI QR Code

A Study On the Healthcare Technology Trends through Patent Data Analysis

특허 데이터 분석을 통한 헬스케어 기술 트렌드 연구

  • Han, Jeong-Hyeon (Division of Industrial Engineering, Ajou University) ;
  • Hyun, Young-Geun (Division of Industrial Engineering, Ajou University) ;
  • Chae, U-ri (Division of Industrial Engineering, Ajou University) ;
  • Lee, Gi-Hyun (Division of Industrial Engineering, Ajou University) ;
  • Lee, Joo-Yeoun (Division of Industrial Engineering, Ajou University)
  • Received : 2019.12.24
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

In a social environment where population aging is rapidly progressing, the healthcare service market is growing fast with the increasing interest in health and quality of life based on rising income levels and the evolution of technology. In this study, after keywords were extracted from Korean and US patent data published on KIPRIS from 2000 to October 2019, frequency analysis, time series analysis, and keyword network analysis were performed. Through this, the change of technology trends were identified, which keywords related to healthcare was shifted from traditional medical words to ICT words. In addition, although the keywords in Korean patents are 55% similar to those in the US, they show an absolute gap in patent production volume. In the next study, we will analyze various data such as domestic and international research and can obtain meaningful implications in the global market on the identified keywords.

지속적인 인구 증가율 하락에도 불구하고 평균 수명 상승에 따라 인구 고령화가 빠르게 진행되고 있는 사회환경에서 기술의 진화 및 소득 수준의 상승을 기반으로 건강과 삶의 질에 대한 관심이 증가하며 헬스케어 서비스 시장은 급속히 성장하고 있는 현실이다. 이에 본 연구에서는 2000년부터 2019년 10월까지 특허정보넷(KIPRIS)에 게재된 헬스케어 관련 한국과 미국의 특허데이터를 대상으로 Keyword를 추출한 후 빈도 분석, 시계열 분석, Keyword Network 분석을 수행하였으며, 이를 통하여 헬스케어 분야의 핵심 Keyword가 전통적인 의료 관련 Keyword에서 ICT관련 Keyword로 변화하고 있는 기술 트렌드가 파악되었다. 또한 미국과 비교하여 핵심 Keyword들이 55% 유사한 분포를 보이지만 특허생산량 면에서 절대적인 격차를 확인하였다. 향후에는 핵심 Keyword에 대하여 국내외 연구동향 등 다양한 자료를 분석하여 글로벌 시장에서 유의미한 시사점을 얻을 수 있는 연구를 진행하고자 한다.

Keywords

References

  1. Worldometers international team. (2019). Worldometers. https://www.worldometers.info/
  2. J. K. Son. (2018). Smart Healthcare that changes future medical service. The Magazine of the IEEE, 45(11), 35-40
  3. Y. J. Kim. (2017). Intelligent healthcare platform industry and international standardization trend. The Journal of The Korean Institute of Communication Sciences, 34(12), 57-63
  4. KCERN (2017). Digital Healthcare National Strategy. Seoul : KCERN.
  5. Y. C. Woo & S. Y. Lee & W. Choi & C.W. Ahn & O.K.Baek, (2019) Trend of Utilization of Machine Learning Technology for Digital Healthcare Data Analysis. Electronics and Telecommunications Trends, 34(1), 98-110 DOI: 10.22648/ETRI.2019.J.340109
  6. E. H. Lee & W. Kim. (2018). Community public smart healthcare model for disease prevention and health extension. Issue&Analysis, (331), 1-25
  7. Y. W. Son, (2017) New Concept Medical Device Forecast Analysis Report. Ministry of Food and Drug Safety, 3-121
  8. H. Y Son (2018) Google 'Human Age 500 Project', Joongang Ilbo Https://news.joins.com/
  9. J. K. Kim & S. J. Lee. (2016). ICT convergence medical industry strategy and implications of major countries. KIEP World Economy Today, 16(23), 1-15
  10. Y. E. Kwon & J. S. Kim. (2018). Analysis of National R&D Patent Performance Network in Bio-Healthcare Sector. Journal of the Korea Convergence Society, 9(12), 17-24 DOI : 10.15207/JKCS.2018.9.12.017
  11. M. K. Kim & J. H. Park & C. L. Joo & J. S. Oh. (2016). Industrial Ecosystem Analysis and Activation of Artificial Intelligence in Healthcare. The Korean Institute of Information Scientists and Engineers Conference Proceedings, 720-722
  12. K. J. Song. (2019). Google acquires Fitbit... Wearable business reinforcement. Financial News https://www.fnnews.com/
  13. S. N. Cho & Y. S. Jeong & C. S. Oh. (2018). An Efficient cryptography for healthcare data in the cloud environment. Journal of Convergence for Information Technology, 8(3), 63-69 https://doi.org/10.22156/CS4SMB.2018.8.3.063
  14. S. Y. Shin. (2017). Current status and new research direction for healthcare big data in Korea. Communications of the Korean Institute of Information Scientists and Engineers, 35(5), 16-19
  15. J. H. Kim & M. S. Lee & H. C. Kim. (2017). Healthcare in the Internet of Things Major Applications Trends : Focusing on Patient Analysis. Korea Technology Innovation Society Conference, 1507-1521
  16. K. R. Cho & S. W. Youn. (2018). Blockchain Use Cases Research. Korea Information Science Society Conference Proceedings, 2062-2064
  17. Y. H. Kim & Y. S. Kim. (2019). Trend Analysis of Healthcare Research in Korea using Topic Modeling. Journal of the Korean society for Wellness, 14(1), 253-262 DOI : 10.21097/ksw.2019.02.14.1.253
  18. K. S. Song & K. W. Kim & S. J. Lee. (2018). Identifying Promising Technologies using Patents : A Retrospective Feature Analysis and a Prospective Needs Analysis on Outlier Patents. Technological Forecasting & Social Change, 128, 118-132 https://doi.org/10.1016/j.techfore.2017.11.008
  19. D. S. Kim & S. H. Cho & J. S. Lee & K. M. Seok & N. H. Kim. (2018). A Study on the Competitive Analysis of Digital Healthcare in Korea through Patent Analysis, Journal of Digital Convergence, 16(9), 229-237 DOI : 10.14400/JDC.2018.16.9.229
  20. M. S. Chung & S. H. Jeong & J. Y. Lee. (2018). Analysis of major research trends in artificial intelligence based on domestic/international patent data. Journal of Digital Convergence, 16(6), 1-9 DOI : 10.14400/JDC.2018.16.6.000