DOI QR코드

DOI QR Code

효율적인 클라우드 기반 스마트팜 제어 시스템 구현 방법

A Study on the Efficient Implementation Method of Cloud-based Smart Farm Control System

  • 최민석 (삼육대학교 경영정보학과)
  • Choi, Minseok (Department of Management Information Systems, Sahmyook University)
  • 투고 : 2019.12.26
  • 심사 : 2020.03.20
  • 발행 : 2020.03.28

초록

4차 산업혁명의 영향으로 농축산업 분야에도 정보통신 기술을 융합한 스마트팜 기술의 도입을 통한 생산성 증대 및 경쟁력 강화를 추진하고 있다. 이러한 스마트 농업 기술은 농업 분야의 미래 성장을 위한 새로운 패러다임으로 자리 잡고 있다. 스마트팜 구현을 위하여 실시간 재배 환경 모니터링과 이와 연계된 재배 환경 자동 제어 시스템의 개발이 필요하며 나아가 작물 생육 상태를 확인하여 관리하는 지능형 시스템의 개발이 요구되어 진다. 본 논문에서는 호환성과 확장성이 뛰어난 웹 플랫폼을 활용하여 클라우드 기반 스마트팜 관리 시스템 구현을 위한 빠르고 효율적인 개발 방법을 제안한다. 제안된 웹 플랫폼을 이용한 개발 방법이 효율적이며 안정적인 시스템 구현이 가능함을 실제 구현된 시스템의 운영을 통하여 확인하였다.

Under the influence of the Fourth Industrial Revolution, there are many tries to promote productivity enhancement and competitiveness by adapting smart farm technology that converges ICT technologies in agriculture. This smart farming technology is emerging as a new paradigm for future growth in agriculture. The development of real-time cultivation environment monitoring and automatic control system is needed to implement smart farm. Furthermore, the development of intelligent system that manages cultivation environment using monitoring data of the growth of crops is required. In this paper, a fast and efficient development method for implementing a cloud-based smart farm management system using a highly compatible and scalable web platform is proposed. It was verified that the proposed method using the web platform is effective and stable system implementation through the operation of the actual implementation system.

키워드

참고문헌

  1. H. S. Kim, D. D. Lee & H. S. Kim. (2014). Strategies and Tasks of ICT Convergence for the Creative Agriculture Realization(R736), Seoul: Korea Rural Economic Institute.
  2. T. Y. Lee & C. M. Heo. (2019). A Study on the Influence of Acceptance Factors of ICT Convergence Technology on the Intention of Acceptance in Agriculture : Focusing on the Moderating Effect of Innovation Resistance. Journal of Digital Convergence, 17(9), 115-126.
  3. M. H. Ahn & C. M. Heo. (2019). The Effect of Technical Characteristics of Smart Farm on Acceptance Intention by Mediating Effect of Effort Expectation. Journal of Digital Convergence, 17(6), 145-157. https://doi.org/10.14400/JDC.2019.17.6.145
  4. N. G. Yoon, J. S. Lee, G. S. Park & J. Y. Lee. (2017). Korea smart farm policy and technology development status. Rural Resources, 59(2), 19-27.
  5. Ministry of Economy and Finance. (2018. 08. 13). 5th Innovation Growth Ministerial Meeting-Strategic Investment Direction for Innovation Growth. MOEF(Online), http://www.moef.go.kr/nw/nes/detailNesDtaView.do?menuNo=4010100&searchNttId1=MOSF_000000000018581&searchBbsId1=MOSFBBS_000000000028
  6. U. H. Yeo, I. B. Lee, K. S. Kwon, T. H Ha, S. J. Park, R. W. Kim, and S. Y. Lee. (2016). Analysis of Research Trend and Core Technologies Based on ICT to Materialize Smart-farm. Protected Horticulture and Plant Factory, 25(1), 30-41. https://doi.org/10.12791/KSBEC.2016.25.1.30
  7. J. Y. Yoon & B. H. Lee. (2017). Implementation strategy and development methods for smart farms in Gangwon Province. Journal of Agricultural, Life and Environmental Sciences, 29, 137-151.
  8. S. J. Oh. (2017). A Design of intelligent information system for greenhouse cultivation. Journal of Digital Convergence, 15(2), 183-190. https://doi.org/10.14400/JDC.2017.15.2.183
  9. Smart Farm Korea. (2019. 10). Structure of smart greenhouse. EPIS(online). https://www.smartfarmkorea.net/contents/view.do?menuId=M01010103
  10. S. H. Lee. (2018). The Fundamental Functionality Design of a Smart Farm Using an Embedded Computing Platform. Journal of The Institute of Electronics and Information Engineers, 55(4), 557-563.
  11. LINK4. (2019. 10). LINK4 Cloud-Based Greenhouse Controls. LINK4(online). http://link4controls.com
  12. RASPBERRY PI FOUNDATION. (2019. 10). Raspberry Pi 3 Model B+. RASPBERRY PI FOUNDATION(online). https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
  13. RASPBERRY PI FOUNDATION. (2019. 10). Raspbian, RASPBERRY PI FOUNDATION. https://www.raspberrypi.org/downloads/raspbian/
  14. NGiNX. (2019. 10). Learn how to configure caching, load balancing, cloud deployments, and other critical NGINX features. NGiNX(online). https://nginx.org/en/
  15. The Chromium Projects. (2019. 10). chromium. The Chromium Projects(online). https://www.chromium.org/Home
  16. Amazon. (2019. 10). Amazon Web Services. AWS(online). https://aws.amazon.com/ko/
  17. Amazon. (2019. 10). Amazon Aurora. AWS(online). https://aws.amazon.com/ko/rds/aurora/?hp=tile&so-exp=below
  18. Amazon. (2019. 10). Amazon EC2. AWS(online). https://aws.amazon.com/ko/ec2/?hp=tile&so-exp=below