DOI QR코드

DOI QR Code

특허 및 뉴스 기사 텍스트 마이닝을 활용한 정책의제 제안

Policy agenda proposals from text mining analysis of patents and news articles

  • 이새미 (동아대학교 스마트 거버넌스 연구센터) ;
  • 홍순구 (동아대학교 경영정보학과)
  • Lee, Sae-Mi (Smart Governance Research Center, Dong-A University) ;
  • Hong, Soon-Goo (Division of Management Information System, Dong-A University)
  • 투고 : 2019.12.27
  • 심사 : 2020.03.20
  • 발행 : 2020.03.28

초록

본 연구의 목적은 텍스트 마이닝을 활용하여 특허와 뉴스 기사 분석을 통해 블록체인 기술 동향을 탐색하고 사회적 관심을 파악하여 블록체인 정책의제를 제안하는 것이다. 이를 위해 국내 블록체인 특허 요약문 327건과 온라인 뉴스기사 전문 5,941건을 수집하고 전처리 과정을 거쳐 LDA 토픽모델링 방법을 사용하여 특허 토픽 12개와 뉴스 토픽 19개를 추출하였다. 특허 분석을 통해 인증과 거래 관련 토픽이 높은 비중을 차지하였다. 뉴스 기사 분석 결과, 사회적 관심은 암호화폐에 치중되어 있는 것으로 나타났다. 이러한 분석 결과와 의제설정이론에 근거하여 블록체인 관련 정책의제를 도출하였다. 본 연구는 대용량 텍스트 문서 분석의 자동화된 기법을 활용하여 분석을 효율적·객관적으로 수행하였으며, 블록체인 기술 동향과 사회적 관심도를 파악한 실증된 기초 분석 자료를 기반으로 정책의제를 제안하였다. 본 연구에서 제시된 정책의제는 향후 정책 결정과정에의 기초자료로 활용될 수 있을 것이다.

The purpose of this study is to explore the trend of blockchain technology through analysis of patents and news articles using text mining, and to suggest the blockchain policy agenda by grasping social interests. For this purpose, 327 blockchain-related patent abstracts in Korea and 5,941 full-text online news articles were collected and preprocessed. 12 patent topics and 19 news topics were extracted with latent dirichlet allocation topic modeling. Analysis of patents showed that topics related to authentication and transaction accounted were largely predominant. Analysis of news articles showed that social interests are mainly concerned with cryptocurrency. Policy agendas were then derived for blockchain development. This study demonstrates the efficient and objective use of an automated technique for the analysis of large text documents. Additionally, specific policy agendas are proposed in this study which can inform future policy-making processes.

키워드

참고문헌

  1. M. Swan. (2015). Blockchain: Blueprint for a new economy. Sebastopol, CA, USA: O'Reilly Media, Inc.
  2. A. Dorri, S. S. Kanhere & R. Jurdak. (2017). Towards an optimized blockchain for IoT. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, Pittsburg, PA, USA, ACM, 173-178.
  3. K. Biswas & V. Muthukkumarasam. (2016). Securing smart cities using blockchain technology. Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications (HPCC), Sydney Australia, 1392-1393.
  4. S. Iyengar, M. D. Peters & D. R. Kinder. (1982). Experimental demonstrations of the "not-so-minimal" consequences of television news programs. The American Political Science Review, 76, 848-858. https://doi.org/10.2307/1962976
  5. J. J. Jeong, J. M. Lee & S. Y. Choi. (2018). Analysis of news regarding the disabled labor using text mining techniques. Reinterpretation of Disability, 48-100.
  6. C. Jeong & K. Kim. (2014). Creating patents on the new technology using analogy-based patent mining. Expert systems with applications, 41(8), 3605-3614. https://doi.org/10.1016/j.eswa.2013.11.045
  7. G. J. Kim, S. S. Park & D. S. Jang. (2015). Technology forecasting using topic-based patent analysis. Journal of Scientific and Industrial Research, 74(5), 265-270.
  8. S. B. Lim, H. R. Choi & N. R. Kim. (2018). Smart governance system based on blockchain.. Pusan, South Korea: Sejong Publisher. DOI : 9791159792267.
  9. C. Park & K. Park. (2018). Trend analysis of application fields of blockchain technology using patent data. Journal of Korean Institute of Next Generation Computing, 14(2), 72-81.
  10. A. Rahaman. (Aug 20, 2018) InterValue The World's first practical blockchain 4.0. Medium. https://medium.com/@aminurrahaman/intervalue-the-worlds-first-practical-blockchain-4-0-b9324878c262
  11. S. Miau & J. M. Yang. (2018). Bibliometrics-based evaluation of the blockchain research trend: 2008-March 2017. Technology Analysis & Strategic Management, 30(9), 1029-1045. https://doi.org/10.1080/09537325.2018.1434138
  12. D. M. Blei, A. Y. Ng & M. Jordan. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.
  13. S. Arora et al. (2013). A practical algorithm for topic modeling with provable guarantees. Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, v. 28.
  14. X. Cheng, X. Yan, Y. Lan & J. Guo. (2014). BTM: Topic modeling over short texts. IEEE Transactions on Knowledge and Data Engineering, 26(12), 2928-2941. DOI : 10.1109/TKDE.2014.2313872
  15. D. M. Blei. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826
  16. Z. Zhai, B. Liu, H. Xu & P. Jia. (2011). Constrained LDA for grouping product features in opinion mining. Procedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Ho Chi Minh City, Vietnam; Springer, Berlin, Heidelberg, 448-459.
  17. J. Born, E. Scheihing, J. Guerra & L. Carcamo. (2014). Analysing microblogs of middle and high school students. Proceedings of the European Conference on Technology Enhanced Learning, Lyon, France, Springer: Cham, 15-28.
  18. M. E. McCombs & D. L. Shaw. (1972). The agenda-setting function of mass media. Public Opinion Quarterly, 36(2), 176-187. https://doi.org/10.1086/267990
  19. E. M. Park & J. H. Seo. (2019). A Study on Leadership Typology in Sports Leaders Based on Big Data Analysis. Journal of the Korea Convergence Society, 10(7), 191-198. https://doi.org/10.15207/jkcs.2019.10.7.191
  20. J. Bae, J. Son & M. Song. (2013). Analysis of twitter for 2012 South Korea presidential election by text mining techniques. Journal of Intelligence and Information Systems, 19(3), 141-156. https://doi.org/10.13088/jiis.2013.19.3.141
  21. B. K. Sung & Y. Y. You. (2018). Analysis of the complaints and policy of the Ministry of Employment and Labor using the R program. Journal of the Korea Convergence Society, 9(7), 41-46. https://doi.org/10.15207/JKCS.2018.9.7.041
  22. J. S. Kam, M. Y. Kim & B. H. Hyun. (2013). A study on analysis of patent information based biotechnology research trend and promising research themes. Journal of Technology Innovation, 21(2), 25-56.
  23. J. C. Choi. (2018). Big Data Patent Analysis Using Social Network Analysis. Journal of the Korea Convergence Society, 9(2), 251-257. https://doi.org/10.15207/JKCS.2018.9.2.251
  24. J. An, K. Ahn & M. Song. (2016). Text mining driven content analysis of Ebola on news media and scientific publications: using bio research papers and news text data. Journal of the Korean Society for Library and Information Science, 50(2), 289-307. https://doi.org/10.4275/KSLIS.2016.50.2.289
  25. T. Jeong. (June 17, 2019). There are no Korean companies in the global top 10 blockchain patents. The Herald Business. http://news.heraldcorp.com/view.php?ud=20190617000149
  26. S. Kim. (June 6, 2019). Blockchain Developers and Professional Construction Talents Shortage... Government and industry "employ and educate. Financial News. http://www.fnnews.com/news/201906061710510492
  27. J. Park. (Aug 9, 2018). 'Innovation Ecosystem's Way to Live' Large companies have started to support startups. Digital Times. http://www.dt.co.kr/contents.html?article_no=2018080902109932781011&ref=naver