DOI QR코드

DOI QR Code

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed

기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용

  • Cho, Yonghyun (Korea-Mekong Water Resources Management Collaboration Research Center, K-water Research Institute) ;
  • Woo, Sumin (Integrated Water Resources Management Department, K-water) ;
  • Noh, Joonwoo (Integrated Water Resources Research Center, K-water Research Institute) ;
  • Lee, Eulrae (Integrated Water Resources Research Center, K-water Research Institute)
  • 조영현 (K-water연구원 한-메콩물관리연구센터) ;
  • 우수민 (K-water 통합물관리처) ;
  • 노준우 (K-water연구원 통합물관리연구소) ;
  • 이을래 (K-water연구원 통합물관리연구소)
  • Received : 2020.01.22
  • Accepted : 2020.03.03
  • Published : 2020.03.31

Abstract

In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.

본 연구에서는 국내 산지지형을 대표하며, 타 댐 유역에 비해 비교적 수문(수위/유량)관측소와 자료가 많은 용담시험유역에 기상레이더 강수량 추정 값(RAR)을 적용해 산지지형 댐 유역에서 강우의 시공간적 변동성과 이에 따른 홍수량의 정확한 분석을 통해 홍수 시 댐 유입량의 정확한 산정 등에 활용할 목적으로 홍수 유출모의를 수행하였다. 모의에는 최근 5년(2014~2018년) 동안 발생한 비교적 독립적인 총 8개의 홍수사상을 적용하였으며, 모형은 HEC-GeoHMS와 ModClark 방법을 통해 분포형 강우를 적용할 수 있는 비교적 간단한 모형인 HEC-HMS를 활용하였다. 아울러 이 과정에서 레이더 강수량의 모형적용을 위해 NCL 및 Python 기반의 자료처리 스크립트 프로그램을 개발하여 활용하였다. 연구 결과로서 기상레이더 강수량 추정 값(RAR)이 관측에 비해 다소 과소 추정(R2 0.86)된 것을 알 수 있었고, 기존 지점관측 기반 유역평균 강수량을 사용한 방법과의 비교에서는 레이더 강수량을 적용한 모형이 유역의 강우-유출 도달시간 등과 관련된 매개변수 값의 큰 조정 없이도 홍수유출을 효율적으로 (8개모의 평균 ENS 0.863, R2 0.873, 그리고 PBIAS 7.49%) 잘 모의하는 것을 파악할 수 있었다.

Keywords

References

  1. Cho, Y. (2020). "Application of NEXRAD radar-based quantitative precipitation estimations for hydrologic simulation using ArcPy and HEC software." Water, MDPI, Vol. 12, No. 1, p. 273. https://doi.org/10.3390/w12010273
  2. Cho, Y., and Engel, B.A. (2017). "NEXRAD quantitative precipitation estimations for hydrologic simulation using a hybrid hydrologic model." Journal of Hydrometeorology, AMS, Vol. 18, No. 1, pp. 25-47. https://doi.org/10.1175/JHM-D-16-0013.1
  3. Cho, Y., and Engel, B.A. (2018). "Spatially distributed long-term hydrologic simulation using a continuous SCS CN method- based hybrid hydrologic model." Hydrological Processes, Wiley, Vol. 32, No. 7, pp. 904-922. https://doi.org/10.1002/hyp.11463
  4. Cho, Y., Engel, B.A., and Merwade, V.M. (2018). "A spatially distributed Clark's unit hydrograph based hybrid hydrologic model (Distributed-Clark)." Hydrological Sciences Journal, Taylor & Francis, Vol. 63, No. 10, pp. 1519-1539. https://doi.org/10.1080/02626667.2018.1516042
  5. Choi, Y.S., Kim, K.T., and Lee, J.H. (2008). "Development of Grid Based Distributed Rainfall-Runoff Model with Finite Volume Method." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 9, pp. 895-905. https://doi.org/10.3741/JKWRA.2008.41.9.895
  6. Choi, Y.S., Kim, K.T., and Kim, J.H. (2012). "Development and evaluation of a real time runoff modelling system using weather radar and distributed model." Journal of Wetlands Research, KWS, Vol. 14, No. 3, pp. 385-397. https://doi.org/10.17663/JWR.2012.14.3.385
  7. Clark, C.O. (1945). "Storage and the unit hydrograph." American Society of Civil Engineers, ASCE, Vol. 110, pp. 1419-1446. https://doi.org/10.1061/TACEAT.0005800
  8. Environmental Systems Research Institute (ESRI) (2019). accessed 15 January 2019, .
  9. Fleming, M.J., and Doan, J.H. (2013). HEC-GeoHMS Geospatial Hydrologic Modeling Extension. User's Manual Version 10.1, U.S. Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (HEC), Davis, C.A., U.S., pp. 1-193.
  10. Kim, B.-S., Bae, Y.-H., Park, J.-S., and Kim, K.-T. (2008). "Flood runoff simulation using radar rainfall and distributed hydrologic model in Un-Gauged basin; Imjin river basin." Journal of the Korean Association of Geographic Information Studies, KAGIS, Vol. 11, No. 3, pp. 52-67.
  11. Korea Meteorological Administration (KMA) (2014). Improvement of post-processing correction method for radar quantitative precipitation estimations and reproduction of historical data. WRC2014-05, KMA Weather Radar Cneter, pp. 1-69.
  12. Kull, D.W., and Feldman, A.D. (1998). "Evolution of Clark's unit graph method to spatially distributed runoff." Journal of Hydrologic Engineering, ASCE, Vol. 3, No. 1, pp. 9-19. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(9)
  13. Lee, J.-K., Kim, J.-H., Park, H.-S., and Suk, M.-K. (2014a). "Development of radar-based multi-sensor quantitative precipitation estimation technique." Atmosphere, KMS, Vol. 24, No. 3, pp. 433-444. https://doi.org/10.14191/Atmos.2014.24.3.433
  14. Lee, J.-K., Kim, J.-H., Park, J.-S., and Kim, K.-H. (2014b). "Application of radar rainfall estimates using the local gauge correction method to hydrolgic model." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 14, No. 4, pp. 67-78. https://doi.org/10.9798/KOSHAM.2014.14.4.67
  15. Lee, J.-K., Lee, M.-H., Suk, M.-K., and Park, H.-S. (2014c). "Application of the radar rainfall estimates using the hybrid scan reflectivity technique to the hydrolgic model." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 10, pp. 867-878. https://doi.org/10.3741/JKWRA.2014.47.10.867
  16. NCAR Command Language (NCL) (2019). accessed 15 January 2019, .
  17. Park, J.-H., Kang, B.-S., Lee, G.-S., and Lee, E.-R. (2007). "Flood runoff analysis using radar rainfall and Vflo model for Namgang Dam watershed." Journal of the Korean Association of Geographic Information Studies, KAGIS, Vol. 10, No. 3, pp. 13-21.
  18. Park, J.H., Kang, B.S., and Lee, G.S. (2008). "Application analysis of GIS based distributed model using radar rainfall." Journal of the Korean Society for Geospatial Information Science, KSGIS, Vol. 16, No. 1, pp. 23-32.
  19. Peters, J.C., and Easton, D.J. (1996). "Runoff simulation using radar rainfall data." Water Resources Bulletin, ASCE, Vol. 32, No. 4, pp. 753-760. https://doi.org/10.1111/j.1752-1688.1996.tb03472.x
  20. Scharffenberg, B., Bartles, M., Braurer, T., Fleming, M., and Karlovits, G. (2018). Hydrologic Modeling System HEC-HMS. User's Manual Version 4.3, U.S. Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (CEIWR-HEC), Davis, C.A., U.S., pp. 1-624.
  21. Vieux, B.E., and Vieux, J.E. (2002). "Vflow: a real-time distributed hydrologic model." Proceedings of the Second Federal Interagency Hydrologic model for flood forecasting, IACWD, Las Vegas, N.V., U.S., p. 244.
  22. Zhange, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, S. V., Kelleher, K., Kitzmller, D., Ding, F., Seo, D.-J., and Dempsey, C. (2011). "National mosiaic and multi-sensor QPE (NMQ) system." Bulletin of the American Meteorological Society, AMS, Vol. 92, pp. 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1