DOI QR코드

DOI QR Code

Evaluation of Soil Carbon Storages in the Organic Farming Paddy Fields

유기 논토양의 토양탄소 저장효과 평가

  • Han, Yangsoo (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Nam, Hong-shik (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Park, Kwang-lai (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Lee, Youngmi (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Lee, Byung-mo (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Park, Kee-choon (Soil and Fertilizer Division, National Institute of Agricultural Sciences)
  • 한양수 (국립농업과학원 유기농업과) ;
  • 남홍식 (국립농업과학원 유기농업과) ;
  • 박광래 (국립농업과학원 유기농업과) ;
  • 이영미 (국립농업과학원 유기농업과) ;
  • 이병모 (국립농업과학원 유기농업과) ;
  • 박기춘 (국립농업과학원 토양비료과)
  • Received : 2019.12.26
  • Accepted : 2020.03.18
  • Published : 2020.03.30

Abstract

This study was conducted to investigate the differences in carbon storage capacity of soil between the conventional and the organic agricultural cultivation followed by the assessment of their economic values. An analysis of 107 samples in the organic and the conventional rice cultivation soils in six regions across South Korea showed that the five regions, Buyeo-II, Gimhae, Sancheong-I, II and Suncheon, had higher organic soil carbon contents than those of values observed on the conventional soils with the exception of the Buyeo-I areas. Based on the results from soil carbon contents, the carbon storage were estimated to be 36.1 megagram carbon (MgC) per ha in the organic paddy soils, while its conventional paddy soils were 29.4 MgC per ha. It showed that the organic paddy soils were 23 % greater than that of its conventional paddy soils. It was estimated that the carbon trading price for economic assessment was ₩758,100 per ha in the organic paddy soil and ₩617,400 per ha in the conventional paddy soil.

본 연구는 토양의 탄소저장 능력과 관련하여 유기 및 관행 재배에 따른 차이를 비교분석하고, 이를 바탕으로 예측된 토양탄소 저장량에 대한 경제적 가치를 평가하고자 2018년 3월부터 5월 사이에 수행하였다. 전국 6개 지역에서 107개의 유기 및 관행 벼 재배토양을 분석한 결과 부여-I 지역을 제외하고, 나머지 5개 지역(부여-II, 김해, 산청-I, II, 순천)은 유기토양의 탄소 함량이 관행토양 탄소함량보다 높게 나타났다. 이를 바탕으로 토양탄소 저장량을 분석한 결과, 유기토양(36.1 MgC ha-1)이 관행토양(29.4 MgC ha-1)보다 약 23 % 많은 토양탄소를 저장한 것으로 나타났다. KOSIS (KOrea Statistical Information Service)의 탄소배출권 가격으로 추정한 유기 및 관행 재배의 단위 면적당 토양탄소 저장량에 대한 경제적 가치는 유기토양 758,100원 ha-1과 관행토양 617,400원 ha-1으로 나타났고, 우리나라 전체 논토양의 탄소저장량 가치는 5,281억 원이며, 이 중 친환경논토양의 가치는 367억 원, 관행논토양의 가치는 4,914억 원으로 추정되었다. 우리나라 전체 논토양의 5.7 %인 친환경논토양의 면적을 확대하는 것이 전체 논토양의 탄소저장량 가치를 향상시키는데 효과적이라 판단된다.

Keywords

References

  1. Bhattacharyya, P., Roy, K. S., Neogi, S., Adhya, T. K., Rao, K. S. and Manna, M. C., "Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice", Soil & Tillage Research, 124, pp. 119-130. (2012). https://doi.org/10.1016/j.still.2012.05.015
  2. Cho, H. S., Seo, M. C., Kim, J. H., Sang, W. G., Shin, P. and Baek, J. K., "The Changes of Soil Carbon as Affected by Several Kinds of Organic Material in Upland Soil", Korean J. Soil Sci. Fert., 51(4), pp. 586-595. (2018). https://doi.org/10.7745/KJSSF.2018.51.4.586
  3. Dai, X., Zhou, W., Liu, G., Liang, G., He, P. and Liu, Z., "Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments", Geoderma, 337, pp. 1116-1125. (2019). https://doi.org/10.1016/j.geoderma.2018.11.023
  4. Food and Agriculture Organization (FAO), "Organic agriculture and climate change mitigation: A report of the Round Table on Organic Agriculture and Climate Change", Rome, Italy. (2011).
  5. Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba Nel, H. and Niggli, U., "Enhanced top soil carbon stocks under organic farming", PNAS, 109(44), pp. 18226-18231. (2012). https://doi.org/10.1073/pnas.1209429109
  6. Hong, C. O., Kang, J. S., Shin, H. M., Cho, J. H. and Suh, J. M., "Effect of Compost and Tillage on Soil Carbon Sequestration and Stability in Paddy Soil", Journal of Environmental Science International., 22(11), pp. 1509-1517. (2013). https://doi.org/10.5322/JESI.2013.22.11.1509
  7. Hong, S. Y., Zang, T. S., Kim, M. S., Che, E. Y. and Ha, S. K., "A study on estimation soil carbon in Asian countries and Korea", Proceeding from autumn symposium at Korean Soc. Soil Sci. Fert. pp. 148-149. (2010).
  8. Hwang, W. J., Park, M. S., Kim, Y. S., Cho, K. J,. Lee, W. K. and Hyun, S. G., "Analysis of Greenhouse Gas Emission Models and Evaluation of Their Application on Agricultural Lands in Korea", Ecology and Resilient Infrastructure, 2(2), pp. 185-190. (2015). https://doi.org/10.17820/eri.2015.2.2.185
  9. Jeon, W. T., Hur, S. O., Seong, K. Y., Oh, I. S., Kim, M. T. and Kang, U. G., "Effect of Green Manure Hairy vetch on Rice Growth and Saving of Irrigation Water", Korean J. Soil Sci. Fert., 44(2), pp. 181-186. (2011). https://doi.org/10.7745/KJSSF.2011.44.2.181
  10. Jeong, G. Y., "Spatial Prediction and Economic Evaluation of Soil Carbon Stocks Using Digital Soil Mapping in an Agricultural Landscape", The Geographical Journal of Korea, 52(3), pp. 389-401. (2018).
  11. Jeong, H. C., Kim, G. Y. Lee, S. B. Lee, J. S. Lee, J. H. and So, K. H. "Evaluation of greenhouse gas emissions in cropland sector on local government levels based on 2006 IPCC guideline", Korean J. Soil Sci. Fert., 45(5), pp. 842-847. (2012). https://doi.org/10.7745/KJSSF.2012.45.5.842
  12. Kang, H. W., Kim, M. T., Kim, K. S., Jeon, W. T., Ryu, J. H. and Seong, K. Y., "No-till Farming System: Research Direction and Outlook in Korea", Korean J. Soil Sci. Fert., 46(3), pp. 143-152. (2013). https://doi.org/10.7745/KJSSF.2013.46.3.143
  13. Kim, M. S., Kim, Y. H., Kang, S. S., Yun, H. B. and Hyun, B. K., "Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil", Korean J. Soil Sci. Fert., 45(6), pp. 1108-1113. (2012). https://doi.org/10.7745/KJSSF.2012.45.6.1108
  14. Kim, S. C., Hong, Y. K., Lee, S. P., Oh, S. M., Lim, K. J. and Yang, J. E., "Evaluating Feasibility of Soil Quality Assessment According to Soil Carbon Contents", Korean J. Soil Sci. Fert., 50(1), pp. 65-70. (2017). https://doi.org/10.7745/KJSSF.2017.50.1.065
  15. Kim, S. J., Choi, J. S., Kang, S. G., Park, J. H., Hong, S. H., Kim, T. S. and Yang, W. H., "Effects of Tillage and Cultivation Methods on Carbon Accumulation and Formation of Water-stable Aggregates at Different Soil Layer in Rice Paddy", Korean J. Soil Sci. Fert., 50, pp. 634-643. (2017). https://doi.org/10.7745/KJSSF.2017.50.6.634
  16. KOSIS, Agricultural Area Survey, Korean Statistical information Service. (2019).
  17. Kundu, S., Ranjan, B., Ved P., Ghosh, H. B. and Gupta, H. S., "Carbon sequestration and relationship between carbon additionand storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalay", Soil & Tillage Research, 92, pp. 87-95. (2007). https://doi.org/10.1016/j.still.2006.01.009
  18. Lal, R., Kimble, J. M. and Follet, R., "Land use and soil carbon pools in terrestrial ecosystems, in: Lal, R., Kimble, J. M., Follet, R. (Eds.), Management of Carbon Sequestration in Soils", CRC Press, New York, USA. (1997).
  19. Lal, R., "Erosion effects on agronomic productivity, in: Laflen, J. M., Tian, J., Huang., C. H. (Eds.), Soil Erosion and Dryland Farming", CRC Press, Boca Raton, FL, USA, pp. 229-246. (2000).
  20. Lee, D. B., Jung, S. C., So, K. H., Jeong, J. W., Jung, H. C., Kim, G. Y. and Shim, G. M., "Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production", Climate Change Research, 3(2), pp. 129-142. (2012).
  21. Lee, N. Y., "Estimation of Carbon Storage in Three Cool-Temperate Broad-Leaved Deciduous Forests at Bukhansan National Park, Korea". Journal of National Park Research, 2(2), pp. 53-57. (2011).
  22. Leifeld, J. and Fuhrer, J., "Organic Farming and Soil Carbon Sequestration: What Do We Really Know About the Benefits?", AMBIO, 39, pp. 585-599. (2010). https://doi.org/10.1007/s13280-010-0082-8
  23. Le Quere, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschutzer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rodenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Seferian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N., "Global carbon budget 2014", Earth Syst. Sci. Data Discuss 7, pp. 47-85. (2015). https://doi.org/10.5194/essd-7-47-2015
  24. Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y., Tsuruta, H., Boonjawat, J. and Lantin, R., "Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling", Global biogeochem. cycles, 18, GB1043. (2004).
  25. Lim, J. E., Lee, S. S., Jeong, S. H., Lee, B. M., Lee, Y. H., Choi, Y. B. and Ok, Y. S., "Effects of Green Manure Incorporation Method on Soil Physicochemical Properties", Journal of Agricultural, Life and Environmental Sciences, 24(4), pp. 1-7. (2012).
  26. Minamikawa, K., Sakai, N. and Hayashi, H., "The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan", Agriculture, Ecosystems and Environment, 107, pp. 371-379. (2005). https://doi.org/10.1016/j.agee.2004.10.027
  27. Mohammad, T. K. N., "Storage and drivers of soil organic carbon and nitrogen in a rangeland ecosystem across a lithosequence in western Iran", Catena, 176, pp. 245-263. (2019). https://doi.org/10.1016/j.catena.2019.01.018
  28. NAQS, "2018 Status certificated organic agricultural products", National Agricultural Products Quality Management Service. (2019).
  29. Nelson, D. W. and Sommer, L. E., "Total carbon, organic carbon, and organic matter", Methods of Soil Analysis, ed Page AL (American Society of Agronomy, Madison, WI), 2nd Ed, pp. 539-579. (1982).
  30. NIAST, "Methods of analysis of soil and plant", National Institute of Agricultural Science and Technology, Suwon, Korea, (2000).
  31. Park, J. N., Lim, J. E., Lee, S. S., Jeong, S. H., Lee, B. M. and Ok, Y. S., "Effects of Tillage and No-till Practices with Green Manure on Soil Carbon", Journal of Agricultural, Life and Environmental Sciences, 25(3), pp. 39-43. (2013).
  32. Park, S. J., Lee, C. H., Kim, M. S., Yun, S. G., Kim, Y. H. and Ko, B. G. "Calculation of GHGs Emission from LULUCF-Cropland Sector in South Korea", Korean J. Soil Sci. Fert., 49(6), pp. 826-831. (2016). https://doi.org/10.7745/KJSSF.2016.49.6.826
  33. Park, S. J., Lee, C. H. and Kim, M. S., "The Analysis of Greenhouse Gases Emission of Cropland Sector Applying the 2006 IPCC Guideline", Journal of Climate Change Research, 9(4), 445-452. (2018). https://doi.org/10.15531/KSCCR.2018.9.4.445
  34. Post, W. M. and Kwon, K. C. "Soil carbon sequestration and land-use change: processes and potential", Global Change Biology, 6, pp. 317-327. (2000). https://doi.org/10.1046/j.1365-2486.2000.00308.x
  35. Rasool, R., Kukal, S. S. and H ira, G. S., "Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system", Soil and Tillage Research, 101, pp. 31-36. (2008). https://doi.org/10.1016/j.still.2008.05.015
  36. Schlesinger, W. H., "Carbon sequestration in soils: Some cautions amidst optimism", Agric. Ecosyst. Environ., 82, pp 121-127. (2000). https://doi.org/10.1016/S0167-8809(00)00221-8
  37. Seo, M. C., Cho, J. H. S., Kim, H., Sang, W. G., Shin, P. and Lee, G. H., "Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter", Korean J. Soil Sci. Fert. 48(6), pp. 736-743. (2015). https://doi.org/10.7745/KJSSF.2015.48.6.736
  38. Six, J., Paustian, K., Elliott, E. T. and Combrick, C., "Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate-associated carbon", Soil Sci. Soc. Am. J., 64, pp. 681-689. (2000). https://doi.org/10.2136/sssaj2000.642681x
  39. Stewart, C. E., Zheng, J. Y., Botte, J. and Cotufo, M. F., "Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils", GCB Bioenergy, 5, pp. 153-164. (2013). https://doi.org/10.1111/gcbb.12001
  40. Su, Y. Z., Wang, F., Suo, D. R., Zhang, Z. H. and Du, M. W., "Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China", Nutrient Cycling in Agroecosystems, 75, pp. 285-295. (2006). https://doi.org/10.1007/s10705-006-9034-x
  41. Yoo, G. Y., Kim, H. J., Kim, Y. S. and Jung, M. H., "Soil Carbon and Microbial Activity Influenced by Pasture andRice Paddy Management", Korean J. Soil Sci. Fert., 45(3), pp. 435-443. (2012). https://doi.org/10.7745/KJSSF.2012.45.3.435