DOI QR코드

DOI QR Code

2006 IPCC 가이드라인 적용에 따른 폐기물 매립 부문의 온실가스 배출량 산정 및 변화 요인 분석

Estimation of greenhouse gas emissions from the landfill sector with the application of the 2006 IPCC guidelines and the change factors analysis

  • 김란희 (안양대학교 환경에너지공학과) ;
  • 박진규 ((주)에코윌플러스) ;
  • 송상훈 (안양대학교 환경에너지공학과) ;
  • 박옥윤 ((재)한국건설생활환경시험연구원 산업융합센터) ;
  • 이남훈 (안양대학교 환경에너지공학과)
  • Kim, Ran-Hui (Department of Environmental and Energy Engineering, Anyang University) ;
  • Park, Jin-Kyu (Ecowillplus co, LTD.) ;
  • Song, Sang-Hoon (Department of Environmental and Energy Engineering, Anyang University) ;
  • Park, Ok-Yun (Korea Conformity Laboratories) ;
  • Lee, Nam-Hoon (Department of Environmental and Energy Engineering, Anyang University)
  • 투고 : 2020.03.02
  • 심사 : 2020.03.11
  • 발행 : 2020.03.30

초록

2015년 말 채택된 파리협정으로 2023년부터 5년 단위로 국제이행점검(Global stock-taking)이 진행될 예정이며, 국가 온실가스 인벤토리와 온실가스 감축 목표 달성 경과 등을 의무적으로 보고해야 한다. 이에 대비하여 온실가스 배출량 산정의 신뢰도를 향상시키고, 온실가스 배출원별 특성 파악과 배출량 관리가 중요한 시점이다. 이에 본 연구에서는 폐기물 매립 부문을 대상으로 2000 GPG, 2006 IPCC 가이드라인 및 2019 Refinement 산정방법에 따라 온실가스 배출량을 비교·분석하였다. 그 결과, 2016년 기준 시나리오 1에서는 2,287 Gg CO2_eq, 시나리오 2-1은 1,870 Gg CO2_eq, 시나리오 2-2는 10,886 Gg CO2_eq, 시나리오 2-3은 10,629 Gg CO2_eq, 시나리오 3은 12,468 Gg CO2_eq으로 나타나 2000 GPG 대비 2006 IPCC 가이드라인 적용 시 온실가스 배출량이 증가하는 것으로 나타났다. 이러한 배출량 변화의 차이는 산정방식의 변화와 적용되는 배출계수 값에 기인하였으며, 이에 우리나라 특성에 따른 배출계수의 국가고유값 개발이 시급한 것으로 나타났다.

Following the Paris Agreement adopted at the end of 2015, global stock-taking has been planned to be carried out on a 5-year basis from 2023, and it is mandatory to report on national GHG inventory and progress toward achieving greenhouse gas reduction targets. To prepare for this, it is important to improve the reliability of estimation of the greenhouse gas emission, identify the characteristics of each greenhouse gas emission source, and manage the amount of emissions. As such, this study compared and analyzed the amount of emissions from the landfill sector using the 2000 GPG, the 2006 IPCC Guidelines, and the 2019 Refinement estimation method. As a result, in comparison to 2016, there were 2,287 Gg CO2_eq. in scenario 1, 1,870 Gg CO2_eq. in scenario 2-1, 10,886 Gg CO2_eq. in scenario 2-2, 10,629 Gg CO2_eq. in scenario 2-3, and 12,468 Gg CO2_eq. in scenario 3. Thus, when the 2006 IPCC Guidelines were applied with respect to 2000 GPG, it was revealed that greenhouse gas emissions have increased. Such difference in the emission changes was due to the changes in the calculation method and the emission factor values applied. Therefore, it is urgent to develop national-specific values of the emission factor based on characteristics of greenhouse gas emission in Korea.

키워드

참고문헌

  1. UNFCCC, "Decision 1/CP.21 Adoption of the Paris Agreement," (2015).
  2. UNFCCC, "Matters relating to Article 14 of the Paris Agreement and paragraphs 99-101 of decision 1/CP.21," (2018).
  3. UNFCCC, https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018, (2018).
  4. Greenhouse gas inventory & research center (GIR), "National greenhouse gas inventory report of Korea," (2018).
  5. IPCC, "2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", (2019).
  6. IPCC, "IPCC Guidelines for National Greenhouse Gas Inventories", (1996).
  7. IPCC, "Good practice guidance and uncertainty menagement in national greenhouse gas inventories", (2002).
  8. Amini, H. R., Reinhart, D. R. and Niskanen, A., "Comparison of first-order-decay modeled and actual field measured municipal solid landfill methane data", Waste Manage., Vol. 33, pp. 2720-2728. (2013). https://doi.org/10.1016/j.wasman.2013.07.025
  9. Santos, M. M. O., van Elk, A. G. P. and Romanel, C., "A correction in the CDM methodological tool for estimaiting methane emissions from solid waste disposal sites", J. Environ. Manage., 164, pp. 151-160. (2015). https://doi.org/10.1016/j.jenvman.2015.08.048
  10. IPCC, "IPCC Guidelines for National Greenhouse Gas Inventories", (2006).
  11. Stegmann, R., Hupe, K., Heyer, K.-U., Koop, A. and Hiemastra, R., "Landfill aeration as a contribution to landfill stabilization and climate protection", Seventh International exchange of experience meeting of COCOON, (2019).
  12. IPCC, "IPCC Fourth Assessment Report : Climate Change 2007. Working Group I : The Physical Science Basis", (2007).
  13. Italy Institute for Environmental Protection and Research, "National Greenhouse Gas Inventory Report of Italy", (2019).
  14. Estonia Ministry of the environment, "National Greenhouse Gas Inventory Report of Estonia", (2019).
  15. Department of the Environment and Energy, "National Greenhouse Gas Inventory Report of Australia", (2018).
  16. Wang, X., Padgett, J. M., De la Cruz, F. B. and Barlaz, M. A., "Wood biodegradation in laboratoryscale landfills", Environmental Science & Technology, 45(16), pp. 6864-6871. (2011). https://doi.org/10.1021/es201241g
  17. Chong, Y. G., Park, J. K., Kim, R. H. and Lee, N. H., "Evaluation of greenhouse gas emissions from municipal solid wastes through carbon flows in landfill", J. Korea Soc. Waste Manag., 34(8), pp. 844-852. (2017). https://doi.org/10.9786/kswm.2017.34.8.844
  18. Statistics Finland, "National Greenhouse Gas Inventory Report of Finland", (2019).
  19. Ban, J. K., Park, J. K., Kim, K., Yoon, S. P. and Lee, N. H., "Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea", J. of KORRA, 23(4), pp. 40-51. (2015).
  20. De la Cruz, F. B. and Barlaz, M. A., "Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data", Environ. Sci. Technol., 44(12), pp. 4722-4728. (2010). https://doi.org/10.1021/es100240r
  21. Mou, Z., Scheutz, C. and Kjeldsen, P., "Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills", Waste Manage., 35, pp. 170-176. (2015). https://doi.org/10.1016/j.wasman.2014.10.003
  22. Wang, X. and Barlaz, M. A., "Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills", Sci. Total Environ., 557-558, pp. 355-362. (2016). https://doi.org/10.1016/j.scitotenv.2016.03.091