SMOOTH POINTS OF $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$

Sung Guen Kim

Abstract. For $n \geq 2$, we characterize the smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$

1. Introduction

The main result about smooth points is known as the Mazur density theorem. Recall that the Mazur density theorem [5, p. 171] says that the set of all the smooth points of a solid closed convex subset of a separable Banach space is a residual subset of its boundary. We denote by B_{E} the closed unit ball of a real Banach space E and also by E^{*} the dual space of $E . x \in B_{E}$ is called a smooth point of B_{E} if there is a unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. We denote by $s m B_{E}$ the set of smooth points of B_{E}. For $n \in \mathbb{N}$, we denote by $\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n-linear forms on E endowed with the norm $\|T\|=\sup _{\left\|x_{k}\right\|=1,1 \leq k \leq n}\left|T\left(x_{1}, \ldots, x_{n}\right)\right|$. A n-linear form T is symmetric if $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for every permutation σ on $\{1,2, \ldots, n\}$. We denote by $\mathcal{L}_{s}\left({ }^{n} E\right)$ the Banach space of all continuous symmetric n-linear forms on E. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a unique $T \in \mathcal{L}_{s}\left({ }^{n} E\right)$ such that $P(x)=T(x, \ldots, x)$ for every $x \in E$. In this case it is convenient to write $T=\check{P}$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [3].

Choi and Kim ([1, 2]) initiated and characterized the smooth points of the unit balls of $\mathcal{P}\left(l_{1}^{2}\right)$ and $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$. Grecu [4] characterized the smooth 2 homogeneous polynomials on Hilbert spaces. $\operatorname{Kim}([6,8])$ characterized the smooth points of the unit balls of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$ and $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$. Kim [7] classified the smooth points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm of weight w. Recently, Kim [9] classified the smooth points

[^0]of the unit ball of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, where $\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}=\mathbb{R}^{2}$ with the hexagonal norm of weight $\frac{1}{2}$.

Let

$$
u_{j}:=[(1,-1),(1,-1), \ldots,(1,-1),(1,1), \ldots,(1,1)] \text { for } 0 \leq j \leq n \text {, }
$$

where -1 appears j-times in u_{j}. Let

$$
\mathcal{U}_{n}:=\left\{u_{j}: 0 \leq j \leq n\right\} .
$$

In this paper, for $n \geq 2$, we characterize the smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$ as follows: Let $n \geq 2$ and $T \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$ with $\|T\|=1$. Then, $T \in \operatorname{sm} B_{\mathcal{L}_{s}\left(l^{n} l_{\infty}^{2}\right)}$ if and only if $\left|\operatorname{Norm}(T) \cap \mathcal{U}_{n}\right|=1$, where

$$
\begin{aligned}
\operatorname{Norm}(T):= & \left\{\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in B_{l_{\infty}^{2}} \times \cdots \times B_{l_{\infty}^{2}}:\right. \\
& \left.\left|T\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)\right|=\|T\|\right\} .
\end{aligned}
$$

2. Results

Let

$$
F_{0}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right):=x_{1} \cdots x_{n}, F_{n}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right):=y_{1} \cdots y_{n}
$$

and for $1 \leq j \leq n-1$,

$$
F_{j}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right):=\sum_{\left\{k_{1}, \ldots, k_{j}, s_{j+1}, \ldots, s_{n}\right\}=\{1, \ldots, n\}} y_{k_{1}} \cdots y_{k_{j}} x_{s_{j+1}} \cdots x_{s_{n}} .
$$

Note that $\left\{F_{0}, F_{1}, \ldots, F_{n}\right\}$ is a basis for $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$. If $T \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$, then

$$
T\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)=\sum_{0 \leq j \leq n} a_{j} F_{j}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)
$$

for some $a_{j} \in \mathbb{R}$. For simplicity, we write $T=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t}$. Note that $F_{0}\left(u_{j}\right)=1$ for every $0 \leq j \leq n$.

Theorem 2.1. Let $n \geq 2$ and $T \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$. Then

$$
\|T\|=\sup \left\{\left|T\left(u_{j}\right)\right|: 0 \leq j \leq n\right\} .
$$

Proof. It follows from the Krein-Milman theorem, symmetry and n-linearity of T.

Theorem 2.2. Let $n \geq 2$ and $T \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$ with $\|T\|=1$. Then, $T \in$ $\operatorname{sm} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}$ if and only if $\left|\operatorname{Norm}(T) \cap \mathcal{U}_{n}\right|=1$.

Proof. (\Rightarrow) Otherwise. There exist $u_{k_{1}}, u_{k_{2}} \in \operatorname{Norm}(T) \cap \mathcal{U}_{n}$ for some $0 \leq$ $k_{1} \neq k_{2} \leq n$. Then,

$$
\operatorname{sign}\left(T\left(u_{k_{1}}\right)\right) \delta_{u_{k_{1}}} \neq \operatorname{sign}\left(T\left(u_{k_{2}}\right)\right) \delta_{u_{k_{2}}}
$$

and

$$
\operatorname{sign}\left(T\left(u_{k_{i}}\right)\right) \delta_{u_{k_{i}}}(T)=\left|T\left(u_{k_{i}}\right)\right|=1=\left\|\operatorname{sign}\left(T\left(u_{k_{i}}\right)\right) \delta_{u_{k_{i}}}\right\|(i=1,2),
$$

where $\delta_{u_{k_{i}}} \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)^{*}$ is the evaluation functional by $u_{k_{i}}$. Hence,

$$
T \notin s m B_{\mathcal{L}_{s}\left(l_{\infty}^{2}\right)} .
$$

This is a contradiction.
(\Leftarrow) Let $T=\sum_{0 \leq j \leq n} a_{j} F_{j}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t}$ for some $a_{j} \in \mathbb{R}$. Suppose that

$$
\operatorname{Norm}(T) \cap \mathcal{U}_{n}=\left\{u_{k_{0}}\right\}
$$

for some $0 \leq k_{0} \leq n$. Then,

$$
\left|T\left(u_{k_{0}}\right)\right|=1>\left|T\left(u_{k}\right)\right|\left(0 \leq k \neq k_{0} \leq n\right) .
$$

Let $f \in \mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)^{*}$ be such that $f(T)=1=\|f\|$. For simplicity we denote $f=\left(f\left(F_{0}\right), f\left(F_{1}\right), \ldots, f\left(F_{n}\right)\right)$. Let

$$
\alpha_{j}:=f\left(F_{j}\right) \text { for } 0 \leq j \leq n .
$$

Claim: $\alpha_{l}=F_{l}\left(u_{k_{0}}\right) \alpha_{0}$ for $1 \leq l \leq n$.
Case 1: $F_{l}\left(u_{k_{0}}\right) \neq 0$.
Let $m \in \mathbb{N}$ be such that

$$
\left|T\left(u_{k}\right)\right|+\frac{1}{m}\left|1-\frac{F_{l}\left(u_{k}\right)}{F_{l}\left(u_{k_{0}}\right)}\right|<1\left(0 \leq k \neq k_{0} \leq n\right) .
$$

Let

$$
T_{1}:=T+\frac{1}{m}\left(F_{0}-\frac{1}{F_{l}\left(u_{k_{0}}\right)} F_{l}\right)
$$

and

$$
T_{2}:=T-\frac{1}{m}\left(F_{0}-\frac{1}{F_{l}\left(u_{k_{0}}\right)} F_{l}\right) .
$$

By Theorem 2.1, it follows that, for $i=1,2$,

$$
\begin{aligned}
\left\|T_{i}\right\|= & \max \left\{\left|T\left(u_{j}\right) \pm \frac{1}{m}\left(F_{0}\left(u_{j}\right)-\frac{F_{l}\left(u_{j}\right)}{F_{l}\left(u_{k_{0}}\right)}\right)\right|: 0 \leq j \leq n\right\} \\
= & \max \left\{\left|T\left(u_{k_{0}}\right)\right|,\left|T\left(u_{k}\right)\right|+\frac{1}{m}\left|1-\frac{F_{l}\left(u_{k}\right)}{F_{l}\left(u_{k_{0}}\right)}\right|: 0 \leq k \neq k_{0} \leq n\right\} \\
& \left(\text { because of } F_{0}\left(u_{k_{0}}\right)=F_{0}\left(u_{k}\right)=1\right) \\
= & 1 .
\end{aligned}
$$

Since
$1 \geq f\left(T_{i}\right)=f(T) \pm \frac{1}{m} f\left(F_{0}-\frac{1}{F_{l}\left(u_{k_{0}}\right)} F_{l}\right)=1 \pm \frac{1}{m}\left(\alpha_{0}-\frac{1}{F_{l}\left(u_{k_{0}}\right)} \alpha_{l}\right)(i=1,2)$,

$$
\alpha_{0}=\frac{1}{F_{l}\left(u_{k_{0}}\right)} \alpha_{l},
$$

so

$$
\alpha_{l}=F_{l}\left(u_{k_{0}}\right) \alpha_{0} .
$$

Case 2: $F_{l}\left(u_{k_{0}}\right)=0$.

Let $m \in \mathbb{N}$ be such that

$$
\left|T\left(u_{k}\right)\right|+\frac{1}{m}\left|F_{l}\left(u_{k}\right)\right|<1\left(0 \leq k \neq k_{0} \leq n\right)
$$

Let

$$
R_{1}:=T+\frac{1}{m} F_{l}, R_{2}:=T-\frac{1}{m} F_{l} .
$$

By Theorem 2.1, it follows that, for $i=1,2$,

$$
\begin{aligned}
\left\|R_{i}\right\| & =\max \left\{\left|T\left(u_{j}\right)\right|+\frac{1}{m}\left|F_{l}\left(u_{j}\right)\right|: 0 \leq j \leq n\right\} \\
& =\max \left\{\left|T\left(u_{k_{0}}\right)\right|,\left|T\left(u_{k}\right)\right|+\frac{1}{m}\left|F_{l}\left(u_{k}\right)\right|: 0 \leq k \neq k_{0} \leq n\right\} \\
& =1
\end{aligned}
$$

Since

$$
1 \geq f\left(R_{i}\right)=f(T) \pm \frac{1}{m} f\left(F_{l}\right)=1 \pm \frac{1}{m} \alpha_{l}(i=1,2)
$$

which shows that $\alpha_{l}=0=F_{l}\left(u_{k_{0}}\right) \alpha_{0}$. We have shown the claim. It follows that

$$
\begin{aligned}
1 & =f(T) \\
& =\sum_{0 \leq j \leq n} a_{j} \alpha_{j} \\
& =a_{0} \alpha_{0}+\left(\sum_{1 \leq j \leq n} a_{j} F_{j}\left(u_{k_{0}}\right)\right) \alpha_{0} \\
& \left.=\left(a_{0} F_{0}\left(u_{k_{0}}\right)+\sum_{1 \leq j \leq n} a_{j} F_{j}\left(u_{k_{0}}\right)\right) \alpha_{0} \text { (because of } F_{0}\left(u_{k_{0}}\right)=1\right) \\
& =T\left(u_{k_{0}}\right) \alpha_{0},
\end{aligned}
$$

which shows that $\alpha_{0}=\operatorname{sign}\left(T\left(u_{k_{0}}\right)\right)$. Therefore,

$$
\alpha_{l}=\operatorname{sign}\left(T\left(u_{k_{0}}\right)\right) F_{l}\left(u_{k_{0}}\right)
$$

for $1 \leq l \leq n$. Since f is unique, $T \in s m B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}$.

References

[1] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), no. 6, 472-480. https://doi.org/10.1007/s000130050292
[2] , Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), no. 1-2, 26-33. https://doi.org/10.1007/BF03322099
[3] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/ 978-1-4471-0869-6
[4] B. C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445-454. https://doi.org/10.1007/PL00000456
[5] R. B. Holmes, Geomeric Functional Anaysis and its Applications, Springer-Verlag, New York, 1975.
[6] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math. 24 (2009), no. 1, 17-29.
[7] , Smooth polynomials of $\mathcal{P}\left({ }^{2} D_{*}(1, W)^{2}\right)$, Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58. https://doi.org/10.3318/PRIA.2013.113.05
[8] The geometry of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, Commun. Korean Math. Soc. 32 (2017), no. 4, 991997.
[9] \qquad , The Mazur density theorem for $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Preprint.

Sung Guen Kim
Department of Mathematics
Kyungpook National University
Daegu 41566, Korea
Email address: sgk317@knu.ac.kr

[^0]: Received March 20, 2019; Revised October 21, 2019; Accepted November 19, 2019.
 2010 Mathematics Subject Classification. Primary 46A22.
 Key words and phrases. Symmetric n-linear forms on the plane with the supremum norm, smooth points.

